You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
233 lines
9.4 KiB
233 lines
9.4 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Configuration class for GNMT."""
|
|
import os
|
|
import json
|
|
import copy
|
|
from typing import List
|
|
|
|
import mindspore.common.dtype as mstype
|
|
|
|
|
|
def _is_dataset_file(file: str):
|
|
return "tfrecord" in file.lower() or "mindrecord" in file.lower()
|
|
|
|
|
|
def _get_files_from_dir(folder: str):
|
|
_files = []
|
|
for file in os.listdir(folder):
|
|
if _is_dataset_file(file):
|
|
_files.append(os.path.join(folder, file))
|
|
return _files
|
|
|
|
|
|
def get_source_list(folder: str) -> List:
|
|
"""
|
|
Get file list from a folder.
|
|
|
|
Returns:
|
|
list, file list.
|
|
"""
|
|
_list = []
|
|
if not folder:
|
|
return _list
|
|
|
|
if os.path.isdir(folder):
|
|
_list = _get_files_from_dir(folder)
|
|
else:
|
|
if _is_dataset_file(folder):
|
|
_list.append(folder)
|
|
return _list
|
|
|
|
|
|
PARAM_NODES = {"dataset_config",
|
|
"model_config",
|
|
"loss_scale_config",
|
|
"learn_rate_config",
|
|
"checkpoint_options"}
|
|
|
|
|
|
class GNMTConfig:
|
|
"""
|
|
Configuration for `GNMT`.
|
|
|
|
Args:
|
|
random_seed (int): Random seed, it can be changed.
|
|
epochs (int): Epoch number.
|
|
batch_size (int): Batch size of input dataset.
|
|
pre_train_dataset (str): Path of pre-training dataset file or folder.
|
|
fine_tune_dataset (str): Path of fine-tune dataset file or folder.
|
|
test_dataset (str): Path of test dataset file or folder.
|
|
valid_dataset (str): Path of validation dataset file or folder.
|
|
dataset_sink_mode (bool): Whether enable dataset sink mode.
|
|
seq_length (int): Length of input sequence.
|
|
vocab_size (int): The shape of each embedding vector.
|
|
hidden_size (int): Size of embedding, attention, dim.
|
|
num_hidden_layers (int): Encoder, Decoder layers.
|
|
intermediate_size (int): Size of intermediate layer in the Transformer
|
|
encoder/decoder cell.
|
|
hidden_act (str): Activation function used in the Transformer encoder/decoder
|
|
cell.
|
|
hidden_dropout_prob (float): The dropout probability for hidden outputs.
|
|
attention_dropout_prob (float): The dropout probability for Attention module.
|
|
initializer_range (float): Initialization value of TruncatedNormal.
|
|
label_smoothing (float): Label smoothing setting.
|
|
beam_width (int): Beam width for beam search in inferring.
|
|
length_penalty_weight (float): Penalty for sentence length.
|
|
max_decode_length (int): Max decode length for inferring.
|
|
input_mask_from_dataset (bool): Specifies whether to use the input mask that loaded from
|
|
dataset.
|
|
init_loss_scale (int): Initialized loss scale.
|
|
loss_scale_factor (int): Loss scale factor.
|
|
scale_window (int): Window size of loss scale.
|
|
lr_scheduler (str): Learning rate scheduler. Please see the Note as follow.
|
|
optimizer (str): Optimizer for training, e.g. Adam, Lamb, momentum. Default: Adam.
|
|
lr (float): Initial learning rate.
|
|
min_lr (float): Minimum learning rate.
|
|
decay_steps (int): Decay steps.
|
|
lr_scheduler_power(float): A value used to calculate decayed learning rate.
|
|
warmup_lr_remain_steps (int or float): Start decay at 'remain_steps' iteration.
|
|
warmup_lr_decay_interval (int):interval between LR decay steps.
|
|
decay_start_step (int): Step to decay.
|
|
warmup_steps (int): Warm up steps.
|
|
existed_ckpt (str): Using existed checkpoint to keep training or not.
|
|
save_ckpt_steps (int): Interval of saving ckpt.
|
|
keep_ckpt_max (int): Max ckpt files number.
|
|
ckpt_prefix (str): Prefix of ckpt file.
|
|
ckpt_path (str): Checkpoints save path.
|
|
save_graphs (bool): Whether to save graphs, please set to True if mindinsight
|
|
is wanted.
|
|
dtype (mstype): Data type of the input.
|
|
|
|
Note:
|
|
There are three types of learning rate scheduler, square root scheduler, polynomial
|
|
decay scheduler and warmup multistep learning rate scheduler.
|
|
In square root scheduler, the following parameters can be used, lr, decay_start_step,
|
|
warmup_steps and min_lr.
|
|
In polynomial decay scheduler, the following parameters can be used, lr, min_lr, decay_steps,
|
|
warmup_steps, lr_scheduler_power.
|
|
In warmmup multistep learning rate scheduler, the following parameters can be used, lr, warmup_steps,
|
|
warmup_lr_remain_steps, warmup_lr_decay_interval, decay_steps, lr_scheduler_power.
|
|
"""
|
|
|
|
def __init__(self,
|
|
random_seed=50,
|
|
epochs=6, batch_size=128,
|
|
pre_train_dataset: str = None,
|
|
fine_tune_dataset: str = None,
|
|
test_dataset: str = None,
|
|
valid_dataset: str = None,
|
|
dataset_sink_mode=True,
|
|
seq_length=51, vocab_size=32320, hidden_size=1024,
|
|
num_hidden_layers=4, intermediate_size=4096,
|
|
hidden_act="tanh",
|
|
hidden_dropout_prob=0.2, attention_dropout_prob=0.2,
|
|
initializer_range=0.1,
|
|
label_smoothing=0.1,
|
|
beam_width=2,
|
|
length_penalty_weight=0.6,
|
|
max_decode_length=50,
|
|
input_mask_from_dataset=False,
|
|
init_loss_scale=65536,
|
|
loss_scale_factor=2, scale_window=1000,
|
|
lr_scheduler="WarmupMultiStepLR",
|
|
optimizer="adam",
|
|
lr=2e-3, min_lr=1e-6,
|
|
decay_steps=4, lr_scheduler_power=0.5,
|
|
warmup_lr_remain_steps=0.666, warmup_lr_decay_interval=-1,
|
|
decay_start_step=-1, warmup_steps=200,
|
|
existed_ckpt="", save_ckpt_steps=3452, keep_ckpt_max=6,
|
|
ckpt_prefix="gnmt", ckpt_path: str = None,
|
|
save_graphs=False,
|
|
dtype=mstype.float32):
|
|
|
|
self.save_graphs = save_graphs
|
|
self.random_seed = random_seed
|
|
self.pre_train_dataset = get_source_list(pre_train_dataset) # type: List[str]
|
|
self.fine_tune_dataset = get_source_list(fine_tune_dataset) # type: List[str]
|
|
self.valid_dataset = get_source_list(valid_dataset) # type: List[str]
|
|
self.test_dataset = get_source_list(test_dataset) # type: List[str]
|
|
|
|
if not isinstance(epochs, int) and epochs < 0:
|
|
raise ValueError("`epoch` must be type of int.")
|
|
|
|
self.epochs = epochs
|
|
self.dataset_sink_mode = dataset_sink_mode
|
|
|
|
self.ckpt_path = ckpt_path
|
|
self.keep_ckpt_max = keep_ckpt_max
|
|
self.save_ckpt_steps = save_ckpt_steps
|
|
self.ckpt_prefix = ckpt_prefix
|
|
self.existed_ckpt = existed_ckpt
|
|
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.hidden_act = hidden_act
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_dropout_prob = attention_dropout_prob
|
|
|
|
self.initializer_range = initializer_range
|
|
self.label_smoothing = label_smoothing
|
|
|
|
self.beam_width = beam_width
|
|
self.length_penalty_weight = length_penalty_weight
|
|
self.max_decode_length = max_decode_length
|
|
self.input_mask_from_dataset = input_mask_from_dataset
|
|
self.compute_type = mstype.float16
|
|
self.dtype = dtype
|
|
|
|
self.scale_window = scale_window
|
|
self.loss_scale_factor = loss_scale_factor
|
|
self.init_loss_scale = init_loss_scale
|
|
|
|
self.optimizer = optimizer
|
|
self.lr = lr
|
|
self.lr_scheduler = lr_scheduler
|
|
self.min_lr = min_lr
|
|
self.lr_scheduler_power = lr_scheduler_power
|
|
self.warmup_lr_remain_steps = warmup_lr_remain_steps
|
|
self.warmup_lr_decay_interval = warmup_lr_decay_interval
|
|
self.decay_steps = decay_steps
|
|
self.decay_start_step = decay_start_step
|
|
self.warmup_steps = warmup_steps
|
|
|
|
@classmethod
|
|
def from_dict(cls, json_object: dict):
|
|
"""Constructs a `TransformerConfig` from a Python dictionary of parameters."""
|
|
_params = {}
|
|
for node in PARAM_NODES:
|
|
for key in json_object[node]:
|
|
_params[key] = json_object[node][key]
|
|
return cls(**_params)
|
|
|
|
@classmethod
|
|
def from_json_file(cls, json_file):
|
|
"""Constructs a `TransformerConfig` from a json file of parameters."""
|
|
with open(json_file, "r") as reader:
|
|
return cls.from_dict(json.load(reader))
|
|
|
|
def to_dict(self):
|
|
"""Serializes this instance to a Python dictionary."""
|
|
output = copy.deepcopy(self.__dict__)
|
|
return output
|
|
|
|
def to_json_string(self):
|
|
"""Serializes this instance to a JSON string."""
|
|
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|