You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
3.9 KiB
138 lines
3.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
@File : test_create_obj.py
|
|
@Author:
|
|
@Date : 2019-06-26
|
|
@Desc : test create object instance on parse function, eg: 'construct'
|
|
Support class : nn.Cell ops.Primitive
|
|
Support parameter: type is define on function 'ValuePtrToPyData'
|
|
(int,float,string,bool,tensor)
|
|
"""
|
|
import logging
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import context
|
|
from mindspore.common.api import ms_function
|
|
from mindspore.common.tensor import Tensor
|
|
from mindspore.ops import operations as P
|
|
from ...ut_filter import non_graph_engine
|
|
|
|
log = logging.getLogger("test")
|
|
log.setLevel(level=logging.ERROR)
|
|
|
|
|
|
class Net(nn.Cell):
|
|
""" Net definition """
|
|
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.softmax = nn.Softmax(0)
|
|
self.axis = 0
|
|
|
|
def construct(self, x):
|
|
x = nn.Softmax(self.axis)(x)
|
|
return x
|
|
|
|
|
|
# Test: creat CELL OR Primitive instance on construct
|
|
@non_graph_engine
|
|
def test_create_cell_object_on_construct():
|
|
""" test_create_cell_object_on_construct """
|
|
log.debug("begin test_create_object_on_construct")
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
np1 = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me = Tensor(np1)
|
|
|
|
net = Net()
|
|
output = net(input_me)
|
|
out_me1 = output.asnumpy()
|
|
print(np1)
|
|
print(out_me1)
|
|
log.debug("finished test_create_object_on_construct")
|
|
|
|
|
|
# Test: creat CELL OR Primitive instance on construct
|
|
class Net1(nn.Cell):
|
|
""" Net1 definition """
|
|
|
|
def __init__(self):
|
|
super(Net1, self).__init__()
|
|
self.add = P.Add()
|
|
|
|
@ms_function
|
|
def construct(self, x, y):
|
|
add = P.Add()
|
|
result = add(x, y)
|
|
return result
|
|
|
|
|
|
@non_graph_engine
|
|
def test_create_primitive_object_on_construct():
|
|
""" test_create_primitive_object_on_construct """
|
|
log.debug("begin test_create_object_on_construct")
|
|
x = Tensor(np.array([[1, 2, 3], [1, 2, 3]], np.float32))
|
|
y = Tensor(np.array([[2, 3, 4], [1, 1, 2]], np.float32))
|
|
|
|
net = Net1()
|
|
net.construct(x, y)
|
|
log.debug("finished test_create_object_on_construct")
|
|
|
|
|
|
# Test: creat CELL OR Primitive instance on construct use many parameter
|
|
class NetM(nn.Cell):
|
|
""" NetM definition """
|
|
|
|
def __init__(self, name, axis):
|
|
super(NetM, self).__init__()
|
|
# self.relu = nn.ReLU()
|
|
self.name = name
|
|
self.axis = axis
|
|
self.softmax = nn.Softmax(self.axis)
|
|
|
|
def construct(self, x):
|
|
x = self.softmax(x)
|
|
return x
|
|
|
|
|
|
class NetC(nn.Cell):
|
|
""" NetC definition """
|
|
|
|
def __init__(self, tensor):
|
|
super(NetC, self).__init__()
|
|
self.tensor = tensor
|
|
|
|
def construct(self, x):
|
|
x = NetM("test", 1)(x)
|
|
return x
|
|
|
|
|
|
# Test: creat CELL OR Primitive instance on construct
|
|
@non_graph_engine
|
|
def test_create_cell_object_on_construct_use_many_parameter():
|
|
""" test_create_cell_object_on_construct_use_many_parameter """
|
|
log.debug("begin test_create_object_on_construct")
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
np1 = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me = Tensor(np1)
|
|
|
|
net = NetC(input_me)
|
|
output = net(input_me)
|
|
out_me1 = output.asnumpy()
|
|
print(np1)
|
|
print(out_me1)
|
|
log.debug("finished test_create_object_on_construct")
|