You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/pipeline/parse/test_operator.py

206 lines
5.9 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_operator """
import numpy as np
from mindspore import Tensor, Model, context
from mindspore.nn import Cell
from mindspore.nn import ReLU
from mindspore.ops import operations as P
from ...ut_filter import non_graph_engine
class arithmetic_Net(Cell):
""" arithmetic_Net definition """
def __init__(self, symbol, loop_count=(1, 3)):
super().__init__()
self.symbol = symbol
self.loop_count = loop_count
self.relu = ReLU()
def construct(self, x):
a, b = self.loop_count
y = self.symbol
if y == 1:
a += b
for _ in (b, a):
x = self.relu(x)
elif y == 2:
b -= a
for _ in (a, b):
x = self.relu(x)
elif y == 3:
z = a + b
for _ in (b, z):
x = self.relu(x)
elif y == 4:
z = b - a
for _ in (z, b):
x = self.relu(x)
elif y == 5:
z = a * b
for _ in (a, z):
x = self.relu(x)
elif y == 6:
z = b / a
for _ in (a, z):
x = self.relu(x)
elif y == 7:
z = b % a + 1
for _ in (a, z):
x = self.relu(x)
else:
if not a:
x = self.relu(x)
return x
class logical_Net(Cell):
""" logical_Net definition """
def __init__(self, symbol, loop_count=(1, 3)):
super().__init__()
self.symbol = symbol
self.loop_count = loop_count
self.fla = P.Flatten()
self.relu = ReLU()
def construct(self, x):
a, b = self.loop_count
y = self.symbol
if y == 1:
if b and a:
x = self.relu(x)
else:
x = self.fla(x)
else:
if b or a:
x = self.relu(x)
else:
x = self.fla(x)
return x
def arithmetic_operator_base(symbol):
""" arithmetic_operator_base """
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
input_me = Tensor(input_np)
logical_operator = {"++": 1, "--": 2, "+": 3, "-": 4, "*": 5, "/": 6, "%": 7, "not": 8}
x = logical_operator[symbol]
net = arithmetic_Net(x)
context.set_context(mode=context.GRAPH_MODE)
model = Model(net)
model.predict(input_me)
def logical_operator_base(symbol):
""" logical_operator_base """
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
input_me = Tensor(input_np)
logical_operator = {"and": 1, "or": 2}
x = logical_operator[symbol]
net = logical_Net(x)
context.set_context(mode=context.GRAPH_MODE)
model = Model(net)
model.predict(input_me)
@non_graph_engine
def test_ME_arithmetic_operator_0080():
""" test_ME_arithmetic_operator_0080 """
arithmetic_operator_base('not')
@non_graph_engine
def test_ME_arithmetic_operator_0070():
""" test_ME_arithmetic_operator_0070 """
logical_operator_base('and')
@non_graph_engine
def test_ME_logical_operator_0020():
""" test_ME_logical_operator_0020 """
logical_operator_base('or')
def test_ops():
class OpsNet(Cell):
""" OpsNet definition """
def __init__(self, x, y):
super(OpsNet, self).__init__()
self.x = x
self.y = y
self.int = 4
self.float = 3.2
self.str_a = "hello"
self.str_b = "world"
def construct(self, x, y):
h = x // y
m = x ** y
n = x % y
r = self.x // self.y
s = self.x ** self.y
t = self.x % self.y
p = h + m + n
q = r + s + t
ret_pow = p ** q + q ** p
ret_mod = p % q + q % p
ret_floor = p // q + q // p
ret = ret_pow + ret_mod + ret_floor
if self.int > self.float:
if [1, 2, 3] is not None:
if self.str_a + self.str_b == "helloworld":
if q == 86:
print("hello world")
return ret
return x
net = OpsNet(9, 2)
x = Tensor(np.random.randint(low=1, high=10, size=(2, 3, 4), dtype=np.int32))
y = Tensor(np.random.randint(low=10, high=20, size=(2, 3, 4), dtype=np.int32))
context.set_context(mode=context.GRAPH_MODE)
net(x, y)
def test_in_dict():
class InDictNet(Cell):
""" InDictNet definition """
def __init__(self, key_in, key_not_in):
super(InDictNet, self).__init__()
self.key_in = key_in
self.key_not_in = key_not_in
def construct(self, x, y, z):
d = {"a": x, "b": y}
ret_in = 1
ret_not_in = 2
if self.key_in in d:
ret_in = d[self.key_in]
if self.key_not_in not in d:
ret_not_in = z
ret = ret_in + ret_not_in
return ret
net = InDictNet("a", "c")
x = Tensor(np.random.randint(low=1, high=10, size=(2, 3, 4), dtype=np.int32))
y = Tensor(np.random.randint(low=10, high=20, size=(2, 3, 4), dtype=np.int32))
z = Tensor(np.random.randint(low=20, high=30, size=(2, 3, 4), dtype=np.int32))
context.set_context(mode=context.GRAPH_MODE)
net(x, y, z)