You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
206 lines
5.9 KiB
206 lines
5.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test_operator """
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, Model, context
|
|
from mindspore.nn import Cell
|
|
from mindspore.nn import ReLU
|
|
from mindspore.ops import operations as P
|
|
from ...ut_filter import non_graph_engine
|
|
|
|
|
|
class arithmetic_Net(Cell):
|
|
""" arithmetic_Net definition """
|
|
|
|
def __init__(self, symbol, loop_count=(1, 3)):
|
|
super().__init__()
|
|
self.symbol = symbol
|
|
self.loop_count = loop_count
|
|
self.relu = ReLU()
|
|
|
|
def construct(self, x):
|
|
a, b = self.loop_count
|
|
y = self.symbol
|
|
if y == 1:
|
|
a += b
|
|
for _ in (b, a):
|
|
x = self.relu(x)
|
|
elif y == 2:
|
|
b -= a
|
|
for _ in (a, b):
|
|
x = self.relu(x)
|
|
elif y == 3:
|
|
z = a + b
|
|
for _ in (b, z):
|
|
x = self.relu(x)
|
|
elif y == 4:
|
|
z = b - a
|
|
for _ in (z, b):
|
|
x = self.relu(x)
|
|
elif y == 5:
|
|
z = a * b
|
|
for _ in (a, z):
|
|
x = self.relu(x)
|
|
elif y == 6:
|
|
z = b / a
|
|
for _ in (a, z):
|
|
x = self.relu(x)
|
|
elif y == 7:
|
|
z = b % a + 1
|
|
for _ in (a, z):
|
|
x = self.relu(x)
|
|
else:
|
|
if not a:
|
|
x = self.relu(x)
|
|
return x
|
|
|
|
|
|
class logical_Net(Cell):
|
|
""" logical_Net definition """
|
|
|
|
def __init__(self, symbol, loop_count=(1, 3)):
|
|
super().__init__()
|
|
self.symbol = symbol
|
|
self.loop_count = loop_count
|
|
self.fla = P.Flatten()
|
|
self.relu = ReLU()
|
|
|
|
def construct(self, x):
|
|
a, b = self.loop_count
|
|
y = self.symbol
|
|
if y == 1:
|
|
if b and a:
|
|
x = self.relu(x)
|
|
else:
|
|
x = self.fla(x)
|
|
else:
|
|
if b or a:
|
|
x = self.relu(x)
|
|
else:
|
|
x = self.fla(x)
|
|
return x
|
|
|
|
|
|
def arithmetic_operator_base(symbol):
|
|
""" arithmetic_operator_base """
|
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me = Tensor(input_np)
|
|
logical_operator = {"++": 1, "--": 2, "+": 3, "-": 4, "*": 5, "/": 6, "%": 7, "not": 8}
|
|
x = logical_operator[symbol]
|
|
net = arithmetic_Net(x)
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
model = Model(net)
|
|
model.predict(input_me)
|
|
|
|
|
|
def logical_operator_base(symbol):
|
|
""" logical_operator_base """
|
|
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input_me = Tensor(input_np)
|
|
logical_operator = {"and": 1, "or": 2}
|
|
x = logical_operator[symbol]
|
|
net = logical_Net(x)
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
model = Model(net)
|
|
model.predict(input_me)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_ME_arithmetic_operator_0080():
|
|
""" test_ME_arithmetic_operator_0080 """
|
|
arithmetic_operator_base('not')
|
|
|
|
|
|
@non_graph_engine
|
|
def test_ME_arithmetic_operator_0070():
|
|
""" test_ME_arithmetic_operator_0070 """
|
|
logical_operator_base('and')
|
|
|
|
|
|
@non_graph_engine
|
|
def test_ME_logical_operator_0020():
|
|
""" test_ME_logical_operator_0020 """
|
|
logical_operator_base('or')
|
|
|
|
|
|
def test_ops():
|
|
class OpsNet(Cell):
|
|
""" OpsNet definition """
|
|
|
|
def __init__(self, x, y):
|
|
super(OpsNet, self).__init__()
|
|
self.x = x
|
|
self.y = y
|
|
self.int = 4
|
|
self.float = 3.2
|
|
self.str_a = "hello"
|
|
self.str_b = "world"
|
|
|
|
def construct(self, x, y):
|
|
h = x // y
|
|
m = x ** y
|
|
n = x % y
|
|
r = self.x // self.y
|
|
s = self.x ** self.y
|
|
t = self.x % self.y
|
|
p = h + m + n
|
|
q = r + s + t
|
|
ret_pow = p ** q + q ** p
|
|
ret_mod = p % q + q % p
|
|
ret_floor = p // q + q // p
|
|
ret = ret_pow + ret_mod + ret_floor
|
|
if self.int > self.float:
|
|
if [1, 2, 3] is not None:
|
|
if self.str_a + self.str_b == "helloworld":
|
|
if q == 86:
|
|
print("hello world")
|
|
return ret
|
|
return x
|
|
|
|
net = OpsNet(9, 2)
|
|
x = Tensor(np.random.randint(low=1, high=10, size=(2, 3, 4), dtype=np.int32))
|
|
y = Tensor(np.random.randint(low=10, high=20, size=(2, 3, 4), dtype=np.int32))
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net(x, y)
|
|
|
|
|
|
def test_in_dict():
|
|
class InDictNet(Cell):
|
|
""" InDictNet definition """
|
|
|
|
def __init__(self, key_in, key_not_in):
|
|
super(InDictNet, self).__init__()
|
|
self.key_in = key_in
|
|
self.key_not_in = key_not_in
|
|
|
|
def construct(self, x, y, z):
|
|
d = {"a": x, "b": y}
|
|
ret_in = 1
|
|
ret_not_in = 2
|
|
if self.key_in in d:
|
|
ret_in = d[self.key_in]
|
|
if self.key_not_in not in d:
|
|
ret_not_in = z
|
|
ret = ret_in + ret_not_in
|
|
return ret
|
|
|
|
net = InDictNet("a", "c")
|
|
x = Tensor(np.random.randint(low=1, high=10, size=(2, 3, 4), dtype=np.int32))
|
|
y = Tensor(np.random.randint(low=10, high=20, size=(2, 3, 4), dtype=np.int32))
|
|
z = Tensor(np.random.randint(low=20, high=30, size=(2, 3, 4), dtype=np.int32))
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net(x, y, z)
|