You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/pipeline/parse/test_parse.py

337 lines
9.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
@File : test_parse.py
@Author:
@Date : 2019-01-23 17:13
@Desc :
"""
import logging
import pytest
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.common.api import ms_function, _executor
from mindspore.ops._grad.grad_base import bprop_getters
from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer
from mindspore.ops.functional import tensor_add
from ...ut_filter import non_graph_engine
# pylint: disable=W0613,W0612
# W0613: unused-argument
@pytest.fixture(name='enable_check_bprop')
def fixture_enable_check_bprop():
context.set_context(check_bprop=True)
yield
context.set_context(check_bprop=False)
grad_all = C.GradOperation(get_all=True)
log = logging.getLogger("test")
log.setLevel(level=logging.ERROR)
context.set_context(mode=context.GRAPH_MODE)
# Test case: use the parse obj interface use default parameter
class Net(nn.Cell):
""" Net definition """
def __init__(self, dim):
super(Net, self).__init__()
self.softmax1 = nn.Softmax(dim)
self.softmax2 = nn.Softmax(dim + 1)
def construct(self, input_data, input1=1+2+3+4):
return self.softmax1(input_data)
@non_graph_engine
def test_parse_defalut_parameter_case2():
""" test_parse_defalut_parameter_case2 """
log.debug("begin test_parse_defalut_parameter_case2")
net = Net(0)
npd = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
log.debug("input value is: %r", npd)
input_data = ms.Tensor(npd)
input_data.set_dtype(ms.float32)
log.debug("start run")
output = net(input_data)
value = output.asnumpy()
log.debug("output value = %r", value)
# Test case: use the variable parameter for parse object
class Net1(nn.Cell):
""" Net1 definition """
def __init__(self):
super(Net1, self).__init__()
def construct(self, *args):
x = args[0]
return x
def test_var_parameter_case2():
""" test_var_parameter_case2 """
log.debug("begin test_var_parameter_case2")
net = Net1()
npd = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
log.debug("input value is: %r", npd)
input_data = ms.Tensor(npd)
input_data.set_dtype(ms.float32)
np1 = np.random.randn(2, 3, 4, 5).astype(np.float32)
input1 = ms.Tensor(np1)
np2 = np.random.randn(2, 3, 4, 5).astype(np.float32)
input2 = ms.Tensor(np2)
_executor.compile(net, input_data, input1, input2)
# Test case: test the global flag
g_x = Tensor(np.ones([3, 3]).astype(np.float32))
@ms_function
def tensor_add_global(x):
""" tensor_add_global """
global g_x
res = tensor_add(x, g_x)
return res
@non_graph_engine
def test_global_flag():
""" test_global_flag """
log.debug("begin test_global_flag")
x = Tensor(np.ones([3, 3]).astype(np.float32))
res = tensor_add_global(x)
log.debug("finished test_global_flag, ret = %r", res)
class NetWithNDarray(nn.Cell):
""" NetWithNDarray definition """
def __init__(self, dim):
super(NetWithNDarray, self).__init__()
self.softmax = nn.Softmax(dim)
self.x = ms.Tensor(np.ones(shape=(1)).astype(np.float32))
def construct(self, input_data):
return self.softmax(input_data) * self.x
@non_graph_engine
def test_net_with_ndarray():
""" test_net_with_ndarray """
net = NetWithNDarray(0)
input_data = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
net(ms.Tensor(input_data))
def test_bprop_with_wrong_output_num(enable_check_bprop):
class BpropWithWrongOutputNum(PrimitiveWithInfer):
@prim_attr_register
def __init__(self):
super(BpropWithWrongOutputNum, self).__init__('BpropWithWrongOutputNum')
def __call__(self, x, y):
return x
def infer_shape(self, x_shape, yshape):
return x_shape
def infer_dtype(self, x_type, y_type):
return x_type
@bprop_getters.register(BpropWithWrongOutputNum)
def get_bprop_with_wrong_output_num(self):
"""Generate bprop for BpropWithWrongOutputNum"""
def bprop(x, y, out, dout):
return (dout,)
return bprop
class BpropWithWrongOutputNumCell(nn.Cell):
def __init__(self):
super(BpropWithWrongOutputNumCell, self).__init__()
def construct(self, x, y):
return BpropWithWrongOutputNum()(x, y)
with pytest.raises(ValueError):
grad_all(BpropWithWrongOutputNumCell())(Tensor(np.array(1).astype(np.int32)),
Tensor(np.array(2).astype(np.int32)))
def test_bprop_with_wrong_output_type(enable_check_bprop):
class BpropWithWrongOutputType(PrimitiveWithInfer):
@prim_attr_register
def __init__(self):
super(BpropWithWrongOutputType, self).__init__('BpropWithWrongOutputType')
def __call__(self, x):
return x
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_type):
return x_type
@bprop_getters.register(BpropWithWrongOutputType)
def get_bprop_with_wrong_output_type(self):
"""Generate bprop for BpropWithWrongOutputType"""
def bprop(x, out, dout):
return (1,)
return bprop
class BpropWithWrongOutputTypeCell(nn.Cell):
def __init__(self):
super(BpropWithWrongOutputTypeCell, self).__init__()
def construct(self, x):
return BpropWithWrongOutputType()(x)
with pytest.raises(TypeError):
grad_all(BpropWithWrongOutputTypeCell())(Tensor(np.ones([64, 10]).astype(np.int32)))
def test_bprop_with_wrong_output_shape(enable_check_bprop):
class BpropWithWrongOutputShape(PrimitiveWithInfer):
@prim_attr_register
def __init__(self):
super(BpropWithWrongOutputShape, self).__init__('BpropWithWrongOutputShape')
def __call__(self, x):
return x
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_type):
return x_type
@bprop_getters.register(BpropWithWrongOutputShape)
def get_bprop_with_wrong_output_shape(self):
"""Generate bprop for BpropWithWrongOutputShape"""
ones = Tensor(np.ones([2,]).astype(np.int32))
def bprop(x, out, dout):
return (ones,)
return bprop
class BpropWithWrongOutputShapeCell(nn.Cell):
def __init__(self):
super(BpropWithWrongOutputShapeCell, self).__init__()
def construct(self, x):
return BpropWithWrongOutputShape()(x)
with pytest.raises(ValueError):
net = BpropWithWrongOutputShapeCell()
net.set_grad()
grad_all(net)(Tensor(np.ones([64, 10]).astype(np.int32)))
class AssignWhenInsertGrad(nn.Cell):
""" NetWithNDarray definition """
def __init__(self):
super(AssignWhenInsertGrad, self).__init__()
self.gather = P.Gather()
self.damping = Tensor(np.array([0.03, 0.03]).astype(np.float32))
self.cov_step = ms.Parameter(0, name="cov_step", requires_grad=False)
self.freq = Tensor(278, ms.int32)
self.getG = P.InsertGradientOf(self.save_gradient)
def save_gradient(self, dout):
self.cov_step = self.cov_step + self.freq
return dout
def construct(self, x):
self.gather(self.damping, self.cov_step, 0)
out = P.ReLU()(x)
out = self.getG(out)
return out
grad_all = C.GradOperation(get_all=True)
class GradNet(nn.Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.net = net
def construct(self, *inputs):
out = self.net(*inputs)
return out, grad_all(self.net)(*inputs)
def test_assign_in_insert_grad():
context.set_context(mode=context.GRAPH_MODE)
net = AssignWhenInsertGrad().to_float(ms.float16)
input_data = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
net_back = GradNet(net)
net_back(ms.Tensor(input_data))
class Assign(nn.Cell):
""" NetWithNDarray definition """
def __init__(self):
super(Assign, self).__init__()
self.cov_step = ms.Parameter(0.0, name="cov_step", requires_grad=False)
def construct(self, x):
self.cov_step = self.cov_step + x
return self.cov_step
def test_assign(enable_check_bprop):
context.set_context(mode=context.GRAPH_MODE)
net = Assign()
input_data = ms.Tensor(np.array(1).astype(np.int32))
net_back = GradNet(net)
net_back(input_data)
class AssignCheck(nn.Cell):
""" NetWithNDarray definition """
def __init__(self):
super(AssignCheck, self).__init__()
self.cov_step = ms.Parameter(0.0, name="cov_step", requires_grad=False)
def construct(self, x):
self.cov_step = x
return self.cov_step
def test_assign_check_none():
context.set_context(mode=context.GRAPH_MODE)
net = AssignCheck()
with pytest.raises(TypeError):
net(None)