You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
337 lines
9.6 KiB
337 lines
9.6 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
@File : test_parse.py
|
|
@Author:
|
|
@Date : 2019-01-23 17:13
|
|
@Desc :
|
|
"""
|
|
import logging
|
|
import pytest
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
from mindspore.common.api import ms_function, _executor
|
|
from mindspore.ops._grad.grad_base import bprop_getters
|
|
from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer
|
|
from mindspore.ops.functional import tensor_add
|
|
from ...ut_filter import non_graph_engine
|
|
|
|
# pylint: disable=W0613,W0612
|
|
# W0613: unused-argument
|
|
|
|
@pytest.fixture(name='enable_check_bprop')
|
|
def fixture_enable_check_bprop():
|
|
context.set_context(check_bprop=True)
|
|
yield
|
|
context.set_context(check_bprop=False)
|
|
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
|
|
|
|
log = logging.getLogger("test")
|
|
log.setLevel(level=logging.ERROR)
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
# Test case: use the parse obj interface use default parameter
|
|
class Net(nn.Cell):
|
|
""" Net definition """
|
|
|
|
def __init__(self, dim):
|
|
super(Net, self).__init__()
|
|
self.softmax1 = nn.Softmax(dim)
|
|
self.softmax2 = nn.Softmax(dim + 1)
|
|
|
|
def construct(self, input_data, input1=1+2+3+4):
|
|
return self.softmax1(input_data)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_parse_defalut_parameter_case2():
|
|
""" test_parse_defalut_parameter_case2 """
|
|
log.debug("begin test_parse_defalut_parameter_case2")
|
|
net = Net(0)
|
|
npd = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
|
|
log.debug("input value is: %r", npd)
|
|
input_data = ms.Tensor(npd)
|
|
input_data.set_dtype(ms.float32)
|
|
|
|
log.debug("start run")
|
|
output = net(input_data)
|
|
|
|
value = output.asnumpy()
|
|
log.debug("output value = %r", value)
|
|
|
|
|
|
# Test case: use the variable parameter for parse object
|
|
class Net1(nn.Cell):
|
|
""" Net1 definition """
|
|
|
|
def __init__(self):
|
|
super(Net1, self).__init__()
|
|
|
|
def construct(self, *args):
|
|
x = args[0]
|
|
return x
|
|
|
|
|
|
def test_var_parameter_case2():
|
|
""" test_var_parameter_case2 """
|
|
log.debug("begin test_var_parameter_case2")
|
|
net = Net1()
|
|
npd = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
|
|
log.debug("input value is: %r", npd)
|
|
input_data = ms.Tensor(npd)
|
|
input_data.set_dtype(ms.float32)
|
|
|
|
np1 = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input1 = ms.Tensor(np1)
|
|
np2 = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
input2 = ms.Tensor(np2)
|
|
|
|
_executor.compile(net, input_data, input1, input2)
|
|
|
|
|
|
# Test case: test the global flag
|
|
g_x = Tensor(np.ones([3, 3]).astype(np.float32))
|
|
|
|
|
|
@ms_function
|
|
def tensor_add_global(x):
|
|
""" tensor_add_global """
|
|
global g_x
|
|
res = tensor_add(x, g_x)
|
|
return res
|
|
|
|
|
|
@non_graph_engine
|
|
def test_global_flag():
|
|
""" test_global_flag """
|
|
log.debug("begin test_global_flag")
|
|
x = Tensor(np.ones([3, 3]).astype(np.float32))
|
|
res = tensor_add_global(x)
|
|
log.debug("finished test_global_flag, ret = %r", res)
|
|
|
|
|
|
class NetWithNDarray(nn.Cell):
|
|
""" NetWithNDarray definition """
|
|
|
|
def __init__(self, dim):
|
|
super(NetWithNDarray, self).__init__()
|
|
self.softmax = nn.Softmax(dim)
|
|
self.x = ms.Tensor(np.ones(shape=(1)).astype(np.float32))
|
|
|
|
def construct(self, input_data):
|
|
return self.softmax(input_data) * self.x
|
|
|
|
|
|
@non_graph_engine
|
|
def test_net_with_ndarray():
|
|
""" test_net_with_ndarray """
|
|
net = NetWithNDarray(0)
|
|
input_data = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
|
|
|
|
net(ms.Tensor(input_data))
|
|
|
|
|
|
def test_bprop_with_wrong_output_num(enable_check_bprop):
|
|
class BpropWithWrongOutputNum(PrimitiveWithInfer):
|
|
@prim_attr_register
|
|
def __init__(self):
|
|
super(BpropWithWrongOutputNum, self).__init__('BpropWithWrongOutputNum')
|
|
|
|
def __call__(self, x, y):
|
|
return x
|
|
|
|
def infer_shape(self, x_shape, yshape):
|
|
return x_shape
|
|
|
|
def infer_dtype(self, x_type, y_type):
|
|
return x_type
|
|
|
|
@bprop_getters.register(BpropWithWrongOutputNum)
|
|
def get_bprop_with_wrong_output_num(self):
|
|
"""Generate bprop for BpropWithWrongOutputNum"""
|
|
|
|
def bprop(x, y, out, dout):
|
|
return (dout,)
|
|
|
|
return bprop
|
|
|
|
class BpropWithWrongOutputNumCell(nn.Cell):
|
|
def __init__(self):
|
|
super(BpropWithWrongOutputNumCell, self).__init__()
|
|
|
|
def construct(self, x, y):
|
|
return BpropWithWrongOutputNum()(x, y)
|
|
|
|
with pytest.raises(ValueError):
|
|
grad_all(BpropWithWrongOutputNumCell())(Tensor(np.array(1).astype(np.int32)),
|
|
Tensor(np.array(2).astype(np.int32)))
|
|
|
|
def test_bprop_with_wrong_output_type(enable_check_bprop):
|
|
class BpropWithWrongOutputType(PrimitiveWithInfer):
|
|
@prim_attr_register
|
|
def __init__(self):
|
|
super(BpropWithWrongOutputType, self).__init__('BpropWithWrongOutputType')
|
|
|
|
def __call__(self, x):
|
|
return x
|
|
|
|
def infer_shape(self, x_shape):
|
|
return x_shape
|
|
|
|
def infer_dtype(self, x_type):
|
|
return x_type
|
|
|
|
@bprop_getters.register(BpropWithWrongOutputType)
|
|
def get_bprop_with_wrong_output_type(self):
|
|
"""Generate bprop for BpropWithWrongOutputType"""
|
|
|
|
def bprop(x, out, dout):
|
|
return (1,)
|
|
|
|
return bprop
|
|
|
|
class BpropWithWrongOutputTypeCell(nn.Cell):
|
|
def __init__(self):
|
|
super(BpropWithWrongOutputTypeCell, self).__init__()
|
|
|
|
def construct(self, x):
|
|
return BpropWithWrongOutputType()(x)
|
|
|
|
with pytest.raises(TypeError):
|
|
grad_all(BpropWithWrongOutputTypeCell())(Tensor(np.ones([64, 10]).astype(np.int32)))
|
|
|
|
|
|
def test_bprop_with_wrong_output_shape(enable_check_bprop):
|
|
class BpropWithWrongOutputShape(PrimitiveWithInfer):
|
|
@prim_attr_register
|
|
def __init__(self):
|
|
super(BpropWithWrongOutputShape, self).__init__('BpropWithWrongOutputShape')
|
|
|
|
def __call__(self, x):
|
|
return x
|
|
|
|
def infer_shape(self, x_shape):
|
|
return x_shape
|
|
|
|
def infer_dtype(self, x_type):
|
|
return x_type
|
|
|
|
@bprop_getters.register(BpropWithWrongOutputShape)
|
|
def get_bprop_with_wrong_output_shape(self):
|
|
"""Generate bprop for BpropWithWrongOutputShape"""
|
|
ones = Tensor(np.ones([2,]).astype(np.int32))
|
|
|
|
def bprop(x, out, dout):
|
|
return (ones,)
|
|
|
|
return bprop
|
|
|
|
class BpropWithWrongOutputShapeCell(nn.Cell):
|
|
def __init__(self):
|
|
super(BpropWithWrongOutputShapeCell, self).__init__()
|
|
|
|
def construct(self, x):
|
|
return BpropWithWrongOutputShape()(x)
|
|
|
|
with pytest.raises(ValueError):
|
|
net = BpropWithWrongOutputShapeCell()
|
|
net.set_grad()
|
|
grad_all(net)(Tensor(np.ones([64, 10]).astype(np.int32)))
|
|
|
|
class AssignWhenInsertGrad(nn.Cell):
|
|
""" NetWithNDarray definition """
|
|
|
|
def __init__(self):
|
|
super(AssignWhenInsertGrad, self).__init__()
|
|
self.gather = P.Gather()
|
|
self.damping = Tensor(np.array([0.03, 0.03]).astype(np.float32))
|
|
self.cov_step = ms.Parameter(0, name="cov_step", requires_grad=False)
|
|
self.freq = Tensor(278, ms.int32)
|
|
self.getG = P.InsertGradientOf(self.save_gradient)
|
|
|
|
def save_gradient(self, dout):
|
|
self.cov_step = self.cov_step + self.freq
|
|
return dout
|
|
|
|
def construct(self, x):
|
|
self.gather(self.damping, self.cov_step, 0)
|
|
out = P.ReLU()(x)
|
|
out = self.getG(out)
|
|
return out
|
|
|
|
grad_all = C.GradOperation(get_all=True)
|
|
|
|
class GradNet(nn.Cell):
|
|
def __init__(self, net):
|
|
super(GradNet, self).__init__()
|
|
self.net = net
|
|
|
|
def construct(self, *inputs):
|
|
out = self.net(*inputs)
|
|
return out, grad_all(self.net)(*inputs)
|
|
|
|
def test_assign_in_insert_grad():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net = AssignWhenInsertGrad().to_float(ms.float16)
|
|
input_data = np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')
|
|
net_back = GradNet(net)
|
|
net_back(ms.Tensor(input_data))
|
|
|
|
class Assign(nn.Cell):
|
|
""" NetWithNDarray definition """
|
|
|
|
def __init__(self):
|
|
super(Assign, self).__init__()
|
|
self.cov_step = ms.Parameter(0.0, name="cov_step", requires_grad=False)
|
|
|
|
def construct(self, x):
|
|
self.cov_step = self.cov_step + x
|
|
return self.cov_step
|
|
|
|
|
|
def test_assign(enable_check_bprop):
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net = Assign()
|
|
input_data = ms.Tensor(np.array(1).astype(np.int32))
|
|
net_back = GradNet(net)
|
|
net_back(input_data)
|
|
|
|
class AssignCheck(nn.Cell):
|
|
""" NetWithNDarray definition """
|
|
|
|
def __init__(self):
|
|
super(AssignCheck, self).__init__()
|
|
self.cov_step = ms.Parameter(0.0, name="cov_step", requires_grad=False)
|
|
|
|
def construct(self, x):
|
|
self.cov_step = x
|
|
return self.cov_step
|
|
|
|
|
|
def test_assign_check_none():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net = AssignCheck()
|
|
with pytest.raises(TypeError):
|
|
net(None)
|