You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/pipeline/parse/test_while_param.py

145 lines
4.2 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_cont_break """
import numpy as np
import mindspore as ms
from mindspore import Tensor, context, nn, ms_function
from mindspore.nn import Cell
from mindspore.ops import operations as P
class WhileSubGraphParam(Cell):
def __init__(self):
super().__init__()
self.update = ms.Parameter(Tensor(1, ms.float32), "update")
def construct(self, x, y, z):
out1 = z
while x < y:
self.update = self.update + 1
out1 = out1 + 1
x = x + 1
return out1, self.update
def test_while_loop_phi():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
x = Tensor(0, ms.float32)
y = Tensor(10, ms.float32)
z = Tensor(100, ms.float32)
net = WhileSubGraphParam()
net(x, y, z)
class WhileSubGraphParam2(Cell):
def __init__(self):
super().__init__()
self.update = ms.Parameter(Tensor(1, ms.float32), "update")
def construct(self, x, y, z):
out1 = z
i = self.update
while x < y:
i = i + 1
out1 = out1 + 1
x = x + 1
return out1, self.update
def test_while_loop_phi_2():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
x = Tensor(0, ms.float32)
y = Tensor(10, ms.float32)
z = Tensor(100, ms.float32)
net = WhileSubGraphParam2()
net(x, y, z)
class WhileSubGraphParam3(Cell):
def __init__(self, initial_input_x):
super().__init__()
self.initial_input_x = initial_input_x
self.X = ms.Parameter(initial_input_x, name="parameter_x")
self.Y = ms.Parameter(self.initial_input_x, name="parameter_y")
def construct(self):
a = 0
while a < 3:
self.X = self.X + self.Y
a += 1
return self.X
def test_while_loop_phi_3():
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
x = Tensor(0, ms.float32)
net = WhileSubGraphParam3(x)
net()
class ControlMixedWhileIf(nn.Cell):
def __init__(self):
super().__init__()
self.assign = P.Assign()
self.var = ms.Parameter(ms.Tensor([1], ms.float32), name="var")
@ms_function
def construct(self, x, y, z, c2, c4):
out = self.assign(self.var, c4)
while x < c2:
y = self.assign(self.var, c4)
while y < c2 and x < c2:
if 2 * y < c2:
y = y + 2
else:
y = y + 1
out = out + y
z = self.assign(self.var, c4)
while z < c2:
z = z + 1
out = out + z
x = x + 1
out = out + x
while x < 2 * c2:
y = self.assign(self.var, c4)
x = x + 1
while y < c2:
z = self.assign(self.var, c4)
while z < c2:
z = z + 1
if x < c2:
y = y - 1
else:
y = y + 1
out = out + z
out = out + y
out = out + x
return out
def test_mixed_while_if():
context.set_context(mode=context.PYNATIVE_MODE)
x = np.array(2).astype(np.int32)
y = np.array(14).astype(np.int32)
z = np.array(1).astype(np.int32)
c2 = Tensor([14], ms.int32)
c4 = Tensor([0], ms.int32)
net = ControlMixedWhileIf()
output = net(Tensor(x), Tensor(y), Tensor(z), c2, c4)
expect = np.array(3318).astype(np.int32)
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
context.set_context(mode=context.GRAPH_MODE)