You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							145 lines
						
					
					
						
							4.2 KiB
						
					
					
				
			
		
		
	
	
							145 lines
						
					
					
						
							4.2 KiB
						
					
					
				| # Copyright 2020 Huawei Technologies Co., Ltd
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| # http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| # ============================================================================
 | |
| """ test_cont_break """
 | |
| import numpy as np
 | |
| 
 | |
| import mindspore as ms
 | |
| from mindspore import Tensor, context, nn, ms_function
 | |
| from mindspore.nn import Cell
 | |
| from mindspore.ops import operations as P
 | |
| 
 | |
| 
 | |
| class WhileSubGraphParam(Cell):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
|         self.update = ms.Parameter(Tensor(1, ms.float32), "update")
 | |
| 
 | |
|     def construct(self, x, y, z):
 | |
|         out1 = z
 | |
|         while x < y:
 | |
|             self.update = self.update + 1
 | |
|             out1 = out1 + 1
 | |
|             x = x + 1
 | |
|         return out1, self.update
 | |
| 
 | |
| 
 | |
| def test_while_loop_phi():
 | |
|     context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
 | |
|     x = Tensor(0, ms.float32)
 | |
|     y = Tensor(10, ms.float32)
 | |
|     z = Tensor(100, ms.float32)
 | |
| 
 | |
|     net = WhileSubGraphParam()
 | |
|     net(x, y, z)
 | |
| 
 | |
| class WhileSubGraphParam2(Cell):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
|         self.update = ms.Parameter(Tensor(1, ms.float32), "update")
 | |
| 
 | |
|     def construct(self, x, y, z):
 | |
|         out1 = z
 | |
|         i = self.update
 | |
|         while x < y:
 | |
|             i = i + 1
 | |
|             out1 = out1 + 1
 | |
|             x = x + 1
 | |
|         return out1, self.update
 | |
| 
 | |
| 
 | |
| def test_while_loop_phi_2():
 | |
|     context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
 | |
|     x = Tensor(0, ms.float32)
 | |
|     y = Tensor(10, ms.float32)
 | |
|     z = Tensor(100, ms.float32)
 | |
| 
 | |
|     net = WhileSubGraphParam2()
 | |
|     net(x, y, z)
 | |
| 
 | |
| 
 | |
| class WhileSubGraphParam3(Cell):
 | |
|     def __init__(self, initial_input_x):
 | |
|         super().__init__()
 | |
|         self.initial_input_x = initial_input_x
 | |
|         self.X = ms.Parameter(initial_input_x, name="parameter_x")
 | |
|         self.Y = ms.Parameter(self.initial_input_x, name="parameter_y")
 | |
| 
 | |
|     def construct(self):
 | |
|         a = 0
 | |
|         while a < 3:
 | |
|             self.X = self.X + self.Y
 | |
|             a += 1
 | |
|         return self.X
 | |
| 
 | |
| 
 | |
| def test_while_loop_phi_3():
 | |
|     context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
 | |
|     x = Tensor(0, ms.float32)
 | |
| 
 | |
|     net = WhileSubGraphParam3(x)
 | |
|     net()
 | |
| 
 | |
| class ControlMixedWhileIf(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
|         self.assign = P.Assign()
 | |
|         self.var = ms.Parameter(ms.Tensor([1], ms.float32), name="var")
 | |
| 
 | |
|     @ms_function
 | |
|     def construct(self, x, y, z, c2, c4):
 | |
|         out = self.assign(self.var, c4)
 | |
|         while x < c2:
 | |
|             y = self.assign(self.var, c4)
 | |
|             while y < c2 and x < c2:
 | |
|                 if 2 * y < c2:
 | |
|                     y = y + 2
 | |
|                 else:
 | |
|                     y = y + 1
 | |
|             out = out + y
 | |
|             z = self.assign(self.var, c4)
 | |
|             while z < c2:
 | |
|                 z = z + 1
 | |
|             out = out + z
 | |
|             x = x + 1
 | |
|         out = out + x
 | |
|         while x < 2 * c2:
 | |
|             y = self.assign(self.var, c4)
 | |
|             x = x + 1
 | |
|             while y < c2:
 | |
|                 z = self.assign(self.var, c4)
 | |
|                 while z < c2:
 | |
|                     z = z + 1
 | |
|                 if x < c2:
 | |
|                     y = y - 1
 | |
|                 else:
 | |
|                     y = y + 1
 | |
|                 out = out + z
 | |
|             out = out + y
 | |
|         out = out + x
 | |
|         return out
 | |
| 
 | |
| def test_mixed_while_if():
 | |
|     context.set_context(mode=context.PYNATIVE_MODE)
 | |
|     x = np.array(2).astype(np.int32)
 | |
|     y = np.array(14).astype(np.int32)
 | |
|     z = np.array(1).astype(np.int32)
 | |
|     c2 = Tensor([14], ms.int32)
 | |
|     c4 = Tensor([0], ms.int32)
 | |
|     net = ControlMixedWhileIf()
 | |
|     output = net(Tensor(x), Tensor(y), Tensor(z), c2, c4)
 | |
|     expect = np.array(3318).astype(np.int32)
 | |
|     assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
 | |
|     context.set_context(mode=context.GRAPH_MODE)
 |