You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
2.4 KiB
55 lines
2.4 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Eval use cityscape dataset."""
|
|
import os
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from src.dataset import make_dataset
|
|
from src.utils import CityScapes, fast_hist, get_scores
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--cityscapes_dir", type=str, required=True, help="Path to the original cityscapes dataset")
|
|
parser.add_argument("--result_dir", type=str, required=True, help="Path to the generated images to be evaluated")
|
|
args = parser.parse_args()
|
|
|
|
|
|
def main():
|
|
CS = CityScapes()
|
|
cityscapes = make_dataset(args.cityscapes_dir)
|
|
hist_perframe = np.zeros((CS.class_num, CS.class_num))
|
|
for i, img_path in enumerate(cityscapes):
|
|
if i % 100 == 0:
|
|
print('Evaluating: %d/%d' % (i, len(cityscapes)))
|
|
img_name = os.path.split(img_path)[1]
|
|
ids1 = CS.get_id(os.path.join(args.cityscapes_dir, img_name))
|
|
ids2 = CS.get_id(os.path.join(args.result_dir, img_name))
|
|
hist_perframe += fast_hist(ids1.flatten(), ids2.flatten(), CS.class_num)
|
|
|
|
mean_pixel_acc, mean_class_acc, mean_class_iou, per_class_acc, per_class_iou = get_scores(hist_perframe)
|
|
print(f"mean_pixel_acc: {mean_pixel_acc}, mean_class_acc: {mean_class_acc}, mean_class_iou: {mean_class_iou}")
|
|
with open('./evaluation_results.txt', 'w') as f:
|
|
f.write('Mean pixel accuracy: %f\n' % mean_pixel_acc)
|
|
f.write('Mean class accuracy: %f\n' % mean_class_acc)
|
|
f.write('Mean class IoU: %f\n' % mean_class_iou)
|
|
f.write('************ Per class numbers below ************\n')
|
|
for i, cl in enumerate(CS.classes):
|
|
while len(cl) < 15:
|
|
cl = cl + ' '
|
|
f.write('%s: acc = %f, iou = %f\n' % (cl, per_class_acc[i], per_class_iou[i]))
|
|
|
|
if __name__ == '__main__':
|
|
main()
|