You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/train/quant/mobilenetv2_combined.py

123 lines
4.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""mobile net v2"""
from mindspore import nn
from mindspore.ops import operations as P
def make_divisible(input_x, div_by=8):
return int((input_x + div_by) // div_by)
def _conv_bn(in_channel,
out_channel,
ksize,
stride=1):
"""Get a conv2d batchnorm and relu layer."""
return nn.SequentialCell(
[nn.Conv2dBnAct(in_channel,
out_channel,
kernel_size=ksize,
stride=stride,
batchnorm=True)])
class InvertedResidual(nn.Cell):
def __init__(self, inp, oup, stride, expend_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(inp * expend_ratio)
self.use_res_connect = self.stride == 1 and inp == oup
if expend_ratio == 1:
self.conv = nn.SequentialCell([
nn.Conv2dBnAct(hidden_dim,
hidden_dim,
3,
stride,
group=hidden_dim,
batchnorm=True,
activation='relu6'),
nn.Conv2dBnAct(hidden_dim, oup, 1, 1,
batchnorm=True)
])
else:
self.conv = nn.SequentialCell([
nn.Conv2dBnAct(inp, hidden_dim, 1, 1,
batchnorm=True,
activation='relu6'),
nn.Conv2dBnAct(hidden_dim,
hidden_dim,
3,
stride,
group=hidden_dim,
batchnorm=True,
activation='relu6'),
nn.Conv2dBnAct(hidden_dim, oup, 1, 1,
batchnorm=True)
])
self.add = P.TensorAdd()
def construct(self, input_x):
out = self.conv(input_x)
if self.use_res_connect:
out = self.add(input_x, out)
return out
class MobileNetV2(nn.Cell):
def __init__(self, num_class=1000, input_size=224, width_mul=1.):
super(MobileNetV2, self).__init__()
_ = input_size
block = InvertedResidual
input_channel = 32
last_channel = 1280
inverted_residual_setting = [
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 230, 1, 1],
]
if width_mul > 1.0:
last_channel = make_divisible(last_channel * width_mul)
self.last_channel = last_channel
features = [_conv_bn(3, input_channel, 3, 2)]
for t, c, n, s in inverted_residual_setting:
out_channel = make_divisible(c * width_mul) if t > 1 else c
for i in range(n):
if i == 0:
features.append(block(input_channel, out_channel, s, t))
else:
features.append(block(input_channel, out_channel, 1, t))
input_channel = out_channel
features.append(_conv_bn(input_channel, self.last_channel, 1))
self.features = nn.SequentialCell(features)
self.mean = P.ReduceMean(keep_dims=False)
self.classifier = nn.DenseBnAct(self.last_channel, num_class)
def construct(self, input_x):
out = input_x
out = self.features(out)
out = self.mean(out, (2, 3))
out = self.classifier(out)
return out