You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/gnn/bgcf/eval.py

106 lines
5.4 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
BGCF evaluation script.
"""
import os
import datetime
import mindspore.context as context
from mindspore.train.serialization import load_checkpoint
from src.bgcf import BGCF
from src.utils import BGCFLogger
from src.config import parser_args
from src.metrics import BGCFEvaluate
from src.callback import ForwardBGCF, TestBGCF
from src.dataset import TestGraphDataset, load_graph
def evaluation():
"""evaluation"""
num_user = train_graph.graph_info()["node_num"][0]
num_item = train_graph.graph_info()["node_num"][1]
eval_class = BGCFEvaluate(parser, train_graph, test_graph, parser.Ks)
for _epoch in range(parser.eval_interval, parser.num_epoch+1, parser.eval_interval):
bgcfnet_test = BGCF([parser.input_dim, num_user, num_item],
parser.embedded_dimension,
parser.activation,
[0.0, 0.0, 0.0],
num_user,
num_item,
parser.input_dim)
load_checkpoint(parser.ckptpath + "/bgcf_epoch{}.ckpt".format(_epoch), net=bgcfnet_test)
forward_net = ForwardBGCF(bgcfnet_test)
user_reps, item_reps = TestBGCF(forward_net, num_user, num_item, parser.input_dim, test_graph_dataset)
test_recall_bgcf, test_ndcg_bgcf, \
test_sedp, test_nov = eval_class.eval_with_rep(user_reps, item_reps, parser)
if parser.log_name:
log.write(
'epoch:%03d, recall_@10:%.5f, recall_@20:%.5f, ndcg_@10:%.5f, ndcg_@20:%.5f, '
'sedp_@10:%.5f, sedp_@20:%.5f, nov_@10:%.5f, nov_@20:%.5f\n' % (_epoch,
test_recall_bgcf[1],
test_recall_bgcf[2],
test_ndcg_bgcf[1],
test_ndcg_bgcf[2],
test_sedp[0],
test_sedp[1],
test_nov[1],
test_nov[2]))
else:
print('epoch:%03d, recall_@10:%.5f, recall_@20:%.5f, ndcg_@10:%.5f, ndcg_@20:%.5f, '
'sedp_@10:%.5f, sedp_@20:%.5f, nov_@10:%.5f, nov_@20:%.5f\n' % (_epoch,
test_recall_bgcf[1],
test_recall_bgcf[2],
test_ndcg_bgcf[1],
test_ndcg_bgcf[2],
test_sedp[0],
test_sedp[1],
test_nov[1],
test_nov[2]))
if __name__ == "__main__":
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend",
save_graphs=False)
parser = parser_args()
os.environ['DEVICE_ID'] = parser.device
train_graph, test_graph, sampled_graph_list = load_graph(parser.datapath)
test_graph_dataset = TestGraphDataset(train_graph, sampled_graph_list, num_samples=parser.raw_neighs,
num_bgcn_neigh=parser.gnew_neighs,
num_neg=parser.num_neg)
if parser.log_name:
now = datetime.datetime.now().strftime("%b_%d_%H_%M_%S")
name = "bgcf" + '-' + parser.log_name + '-' + parser.dataset
log_save_path = './log-files/' + name + '/' + now
log = BGCFLogger(logname=name, now=now, foldername='log-files', copy=False)
log.open(log_save_path + '/log.train.txt', mode='a')
for arg in vars(parser):
log.write(arg + '=' + str(getattr(parser, arg)) + '\n')
else:
for arg in vars(parser):
print(arg + '=' + str(getattr(parser, arg)))
evaluation()