You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/research/cv/tinynet/train.py

251 lines
11 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Training Interface"""
import sys
import os
import argparse
import copy
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.model import ParallelMode, Model
from mindspore.train.callback import TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.nn import SGD, RMSProp, Loss, Top1CategoricalAccuracy, \
Top5CategoricalAccuracy
from mindspore import context, Tensor
from src.dataset import create_dataset, create_dataset_val
from src.utils import add_weight_decay, count_params, str2bool, get_lr
from src.callback import EmaEvalCallBack, LossMonitor
from src.loss import LabelSmoothingCrossEntropy
from src.tinynet import tinynet
parser = argparse.ArgumentParser(description='Training')
# training parameters
parser.add_argument('--data_path', type=str, default="", metavar="DIR",
help='path to dataset')
parser.add_argument('--model', default='tinynet_c', type=str, metavar='MODEL',
help='Name of model to train (default: "tinynet_c"')
parser.add_argument('--num-classes', type=int, default=1000, metavar='N',
help='number of label classes (default: 1000)')
parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--drop', type=float, default=0.0, metavar='DROP',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-connect', type=float, default=0.0, metavar='DROP',
help='Drop connect rate (default: 0.)')
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "sgd"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.0001,
help='weight decay (default: 0.0001)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR',
help='warmup learning rate (default: 0.0001)')
parser.add_argument('--epochs', type=int, default=200, metavar='N',
help='number of epochs to train (default: 2)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=3, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
parser.add_argument('--smoothing', type=float, default=0.1,
help='label smoothing (default: 0.1)')
parser.add_argument('--ema-decay', type=float, default=0,
help='decay factor for model weights moving average \
(default: 0.999)')
parser.add_argument('--amp_level', type=str, default='O0')
parser.add_argument('--per_print_times', type=int, default=100)
# batch norm parameters
parser.add_argument('--bn-tf', action='store_true', default=False,
help='Use Tensorflow BatchNorm defaults for models that \
support it (default: False)')
parser.add_argument('--bn-momentum', type=float, default=None,
help='BatchNorm momentum override (if not None)')
parser.add_argument('--bn-eps', type=float, default=None,
help='BatchNorm epsilon override (if not None)')
# parallel parameters
parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
help='how many training processes to use (default: 1)')
parser.add_argument('--distributed', action='store_true', default=False)
parser.add_argument('--dataset_sink', action='store_true', default=True)
# checkpoint config
parser.add_argument('--ckpt', type=str, default=None)
parser.add_argument('--ckpt_save_epoch', type=int, default=1)
parser.add_argument('--loss_scale', type=int,
default=1024, help='static loss scale')
parser.add_argument('--train', type=str2bool, default=1, help='train or eval')
parser.add_argument('--GPU', action='store_true', default=False,
help='Use GPU for training (default: False)')
def main():
"""Main entrance for training"""
args = parser.parse_args()
print(sys.argv)
devid, args.rank_id, args.rank_size = 0, 0, 1
context.set_context(mode=context.GRAPH_MODE)
if args.distributed:
if args.GPU:
init("nccl")
context.set_context(device_target='GPU')
else:
init()
devid = int(os.getenv('DEVICE_ID'))
context.set_context(device_target='Ascend',
device_id=devid,
reserve_class_name_in_scope=False)
context.reset_auto_parallel_context()
args.rank_id = get_rank()
args.rank_size = get_group_size()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True,
device_num=args.rank_size)
else:
if args.GPU:
context.set_context(device_target='GPU')
is_master = not args.distributed or (args.rank_id == 0)
# parse model argument
assert args.model.startswith(
"tinynet"), "Only Tinynet models are supported."
_, sub_name = args.model.split("_")
net = tinynet(sub_model=sub_name,
num_classes=args.num_classes,
drop_rate=args.drop,
drop_connect_rate=args.drop_connect,
global_pool="avg",
bn_tf=args.bn_tf,
bn_momentum=args.bn_momentum,
bn_eps=args.bn_eps)
if is_master:
print("Total number of parameters:", count_params(net))
# input image size of the network
input_size = net.default_cfg['input_size'][1]
train_dataset = val_dataset = None
train_data_url = os.path.join(args.data_path, 'train')
val_data_url = os.path.join(args.data_path, 'val')
val_dataset = create_dataset_val(args.batch_size,
val_data_url,
workers=args.workers,
distributed=False,
input_size=input_size)
if args.train:
train_dataset = create_dataset(args.batch_size,
train_data_url,
workers=args.workers,
distributed=args.distributed,
input_size=input_size)
batches_per_epoch = train_dataset.get_dataset_size()
loss = LabelSmoothingCrossEntropy(
smooth_factor=args.smoothing, num_classes=args.num_classes)
time_cb = TimeMonitor(data_size=batches_per_epoch)
loss_scale_manager = FixedLossScaleManager(
args.loss_scale, drop_overflow_update=False)
lr_array = get_lr(base_lr=args.lr,
total_epochs=args.epochs,
steps_per_epoch=batches_per_epoch,
decay_epochs=args.decay_epochs,
decay_rate=args.decay_rate,
warmup_epochs=args.warmup_epochs,
warmup_lr_init=args.warmup_lr,
global_epoch=0)
lr = Tensor(lr_array)
loss_cb = LossMonitor(lr_array,
args.epochs,
per_print_times=args.per_print_times,
start_epoch=0)
param_group = add_weight_decay(net, weight_decay=args.weight_decay)
if args.opt == 'sgd':
if is_master:
print('Using SGD optimizer')
optimizer = SGD(param_group,
learning_rate=lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
loss_scale=args.loss_scale)
elif args.opt == 'rmsprop':
if is_master:
print('Using rmsprop optimizer')
optimizer = RMSProp(param_group,
learning_rate=lr,
decay=0.9,
weight_decay=args.weight_decay,
momentum=args.momentum,
epsilon=args.opt_eps,
loss_scale=args.loss_scale)
loss.add_flags_recursive(fp32=True, fp16=False)
eval_metrics = {'Validation-Loss': Loss(),
'Top1-Acc': Top1CategoricalAccuracy(),
'Top5-Acc': Top5CategoricalAccuracy()}
if args.ckpt:
ckpt = load_checkpoint(args.ckpt)
load_param_into_net(net, ckpt)
net.set_train(False)
model = Model(net, loss, optimizer, metrics=eval_metrics,
loss_scale_manager=loss_scale_manager,
amp_level=args.amp_level)
net_ema = copy.deepcopy(net)
net_ema.set_train(False)
assert args.ema_decay > 0, "EMA should be used in tinynet training."
ema_cb = EmaEvalCallBack(network=net,
ema_network=net_ema,
loss_fn=loss,
eval_dataset=val_dataset,
decay=args.ema_decay,
save_epoch=args.ckpt_save_epoch,
dataset_sink_mode=args.dataset_sink,
start_epoch=0)
callbacks = [loss_cb, ema_cb, time_cb] if is_master else []
if is_master:
print("Training on " + args.model
+ " with " + str(args.num_classes) + " classes")
model.train(args.epochs, train_dataset, callbacks=callbacks,
dataset_sink_mode=args.dataset_sink)
if __name__ == '__main__':
main()