You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
47 lines
2.0 KiB
47 lines
2.0 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Parameters utils"""
|
|
|
|
from mindspore.common.initializer import initializer, TruncatedNormal
|
|
|
|
def init_net_param(network, initialize_mode='TruncatedNormal'):
|
|
"""Init the parameters in net."""
|
|
params = network.trainable_params()
|
|
for p in params:
|
|
if 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
|
|
if initialize_mode == 'TruncatedNormal':
|
|
p.set_data(initializer(TruncatedNormal(0.02), p.data.shape, p.data.dtype))
|
|
else:
|
|
p.set_data(initialize_mode, p.data.shape, p.data.dtype)
|
|
|
|
|
|
def load_backbone_params(network, param_dict):
|
|
"""Init the parameters from pre-train model, default is mobilenetv2."""
|
|
for _, param in network.parameters_and_names():
|
|
param_name = param.name.replace('network.backbone.', '')
|
|
name_split = param_name.split('.')
|
|
if 'features_1' in param_name:
|
|
param_name = param_name.replace('features_1', 'features')
|
|
if 'features_2' in param_name:
|
|
param_name = '.'.join(['features', str(int(name_split[1]) + 14)] + name_split[2:])
|
|
if param_name in param_dict:
|
|
param.set_data(param_dict[param_name].data)
|
|
|
|
def filter_checkpoint_parameter(param_dict):
|
|
"""remove useless parameters"""
|
|
for key in list(param_dict.keys()):
|
|
if 'multi_loc_layers' in key or 'multi_cls_layers' in key:
|
|
del param_dict[key]
|