You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/ascend/test_embedding_lookup.py

44 lines
1.5 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend")
class Net(nn.Cell):
def __init__(self, offset):
super(Net, self).__init__()
self.embedding = P.EmbeddingLookup()
self.offset = offset
def construct(self, param, index):
return self.embedding(param, index, self.offset)
def test_embedding_lookup_sparse():
params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mstype.int32)
indices = Tensor(np.array([[5, 2], [8, 5]]), mstype.int32)
offset = 4
embedding = Net(offset)
out = embedding(params, indices)
assert(out.asnumpy() == [[[10, 11], [0, 0]], [[0, 0], [10, 11]]]).all()