You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
64 lines
2.1 KiB
64 lines
2.1 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.context as context
|
|
from mindspore import Tensor
|
|
from mindspore.nn import Cell
|
|
import mindspore.ops.operations as P
|
|
from mindspore.nn.graph_kernels import ReLU
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
|
|
|
|
|
|
class Net(Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.add = P.TensorAdd()
|
|
self.sub = P.Sub()
|
|
self.mul = P.Mul()
|
|
self.relu = ReLU()
|
|
|
|
def construct(self, x, y):
|
|
sub_res = self.sub(x, y)
|
|
mul_res = self.mul(sub_res, x)
|
|
relu_res = self.relu(mul_res)
|
|
square_res = P.Square()(relu_res)
|
|
add_res = self.add(relu_res, square_res)
|
|
add1_res = self.add(add_res, add_res)
|
|
return self.add(add1_res, add1_res)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_basic():
|
|
input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
|
|
input_y = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
|
|
sub_res = input_x - input_y
|
|
mul_res = sub_res * input_x
|
|
relu_res = np.maximum(mul_res, 0)
|
|
square_res = np.square(relu_res)
|
|
add_res = relu_res + square_res
|
|
add1_res = add_res + add_res
|
|
expect = add1_res + add1_res
|
|
|
|
net = Net()
|
|
result = net(Tensor(input_x), Tensor(input_y))
|
|
|
|
res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
|
assert res
|