You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1004 lines
36 KiB
1004 lines
36 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
"""basic"""
|
|
import math
|
|
import numpy as np
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils
|
|
from mindspore.common.seed import _get_graph_seed
|
|
from mindspore.common.tensor import Tensor
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops import functional as F
|
|
from mindspore.ops.functional import identity
|
|
from mindspore.ops.operations import _inner_ops as inner
|
|
from mindspore.ops.primitive import constexpr, Primitive
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore._extends import cell_attr_register
|
|
from mindspore._checkparam import Rel, Validator
|
|
from ..cell import Cell
|
|
from .activation import get_activation
|
|
|
|
__all__ = ['Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot', 'Pad', 'Unfold',
|
|
'Tril', 'Triu', 'ResizeBilinear', 'MatrixDiag', 'MatrixDiagPart', 'MatrixSetDiag', 'L1Regularizer']
|
|
|
|
|
|
class L1Regularizer(Cell):
|
|
r"""
|
|
Apply l1 regularization to weights
|
|
|
|
l1 regularization makes weights sparsity
|
|
|
|
.. math::
|
|
\text{loss}=\lambda * \text{reduce_sum}(\text{abs}(\omega))
|
|
|
|
Note:
|
|
scale(regularization factor) should be a number which greater than 0
|
|
|
|
Args:
|
|
scale (int, float): l1 regularization factor which greater than 0.
|
|
|
|
Raises:
|
|
ValueError: If `scale(regularization factor)` is not greater than 0.
|
|
If `scale(regularization factor)` is math.inf or math.nan.
|
|
|
|
Inputs:
|
|
- **weights** (Tensor) - The input tensor
|
|
|
|
Outputs:
|
|
Tensor, which dtype is higher precision data type between mindspore.float32 and weights dtype,
|
|
and Tensor shape is ()
|
|
|
|
Supported Platforms:
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
Examples:
|
|
>>> scale = 0.5
|
|
>>> net = nn.L1Regularizer(scale)
|
|
>>> weights = Tensor(np.array([[1.0, -2.0], [-3.0, 4.0]]).astype(np.float32))
|
|
>>> output = net(weights)
|
|
>>> print(output.asnumpy())
|
|
5.0
|
|
"""
|
|
|
|
def __init__(self, scale):
|
|
super(L1Regularizer, self).__init__()
|
|
Validator.check_value_type("scale", scale, [int, float], self.cls_name)
|
|
if scale <= 0:
|
|
raise ValueError("scale should be a number which greater than 0")
|
|
if math.isinf(scale) or math.isnan(scale):
|
|
raise ValueError("scale can not be INF or NAN")
|
|
self.abs = P.Abs()
|
|
self.reduce_sum = P.ReduceSum()
|
|
self.scale = Tensor(scale, dtype=mstype.float32)
|
|
|
|
def construct(self, weights):
|
|
const_utils.check_type_valid(F.dtype(weights), mstype.number_type, 'weights')
|
|
l1_regularization = self.scale * self.reduce_sum(self.abs(weights))
|
|
return l1_regularization
|
|
|
|
|
|
class Dropout(Cell):
|
|
r"""
|
|
Dropout layer for the input.
|
|
|
|
Randomly set some elements of the input tensor to zero with probability :math:`1 - keep\_prob` during training
|
|
using samples from a Bernoulli distribution.
|
|
|
|
The outputs are scaled by a factor of :math:`\frac{1}{keep\_prob}` during training so
|
|
that the output layer remains at a similar scale. During inference, this
|
|
layer returns the same tensor as the input.
|
|
|
|
This technique is proposed in paper `Dropout: A Simple Way to Prevent Neural Networks from Overfitting
|
|
<http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf>`_ and proved to be effective to reduce
|
|
over-fitting and prevents neurons from co-adaptation. See more details in `Improving neural networks by
|
|
preventing co-adaptation of feature detectors
|
|
<https://arxiv.org/pdf/1207.0580.pdf>`_.
|
|
|
|
Note:
|
|
Each channel will be zeroed out independently on every construct call.
|
|
|
|
Args:
|
|
keep_prob (float): The keep rate, greater than 0 and less equal than 1. E.g. rate=0.9,
|
|
dropping out 10% of input units. Default: 0.5.
|
|
dtype (:class:`mindspore.dtype`): Data type of input. Default: mindspore.float32.
|
|
|
|
Raises:
|
|
ValueError: If `keep_prob` is not in range (0, 1].
|
|
|
|
Inputs:
|
|
- **input** (Tensor) - The input tensor.
|
|
|
|
Outputs:
|
|
Tensor, output tensor with the same shape as the input.
|
|
|
|
Supported Platforms:
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
Examples:
|
|
>>> x = Tensor(np.ones([2, 2, 3]), mindspore.float32)
|
|
>>> net = nn.Dropout(keep_prob=0.8)
|
|
>>> net.set_train()
|
|
Dropout<keep_prob=0.8>
|
|
>>> output = net(x)
|
|
>>> print(output.shape)
|
|
(2, 2, 3)
|
|
"""
|
|
|
|
def __init__(self, keep_prob=0.5, dtype=mstype.float32):
|
|
super(Dropout, self).__init__()
|
|
if keep_prob <= 0 or keep_prob > 1:
|
|
raise ValueError("dropout probability should be a number in range (0, 1], but got {}".format(keep_prob))
|
|
Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
|
|
Validator.check_value_type('keep_prob', keep_prob, [float], self.cls_name)
|
|
self.keep_prob = keep_prob
|
|
seed0, seed1 = _get_graph_seed(0, "dropout")
|
|
self.seed0 = seed0
|
|
self.seed1 = seed1
|
|
self.dropout = P.Dropout(keep_prob, seed0, seed1)
|
|
|
|
def construct(self, x):
|
|
if not self.training:
|
|
return x
|
|
|
|
if self.keep_prob == 1:
|
|
return x
|
|
|
|
out, _ = self.dropout(x)
|
|
return out
|
|
|
|
def extend_repr(self):
|
|
return 'keep_prob={}'.format(self.keep_prob)
|
|
|
|
|
|
class Flatten(Cell):
|
|
r"""
|
|
Flatten layer for the input.
|
|
|
|
Flattens a tensor without changing dimension of batch size on the 0-th axis.
|
|
|
|
Inputs:
|
|
- **input** (Tensor) - Tensor of shape :math:`(N, \ldots)` to be flattened.
|
|
|
|
Outputs:
|
|
Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is
|
|
the product of the remaining dimensions.
|
|
|
|
Supported Platforms:
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
Examples:
|
|
>>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
|
|
>>> net = nn.Flatten()
|
|
>>> output = net(input)
|
|
>>> print(output)
|
|
[[1.2 1.2 2.1 2.1]
|
|
[2.2 2.2 3.2 3.2]]
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(Flatten, self).__init__()
|
|
|
|
def construct(self, x):
|
|
return F.reshape(x, (F.shape(x)[0], -1))
|
|
|
|
@constexpr
|
|
def check_dense_input_shape(x):
|
|
if len(x) < 2:
|
|
raise ValueError('For Dense, the dimension of input should not be less than 2, while the input dimension is '
|
|
+ f'{len(x)}.')
|
|
|
|
class Dense(Cell):
|
|
r"""
|
|
The dense connected layer.
|
|
|
|
Applies dense connected layer for the input. This layer implements the operation as:
|
|
|
|
.. math::
|
|
\text{outputs} = \text{activation}(\text{inputs} * \text{kernel} + \text{bias}),
|
|
|
|
where :math:`\text{activation}` is the activation function passed as the activation
|
|
argument (if passed in), :math:`\text{kernel}` is a weight matrix with the same
|
|
data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector
|
|
with the same data type as the inputs created by the layer (only if has_bias is True).
|
|
|
|
Args:
|
|
in_channels (int): The number of channels in the input space.
|
|
out_channels (int): The number of channels in the output space.
|
|
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
|
|
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
|
|
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
|
|
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
|
|
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
|
activation (Union[str, Cell, Primitive]): activate function applied to the output of the fully connected layer,
|
|
eg. 'ReLU'.Default: None.
|
|
|
|
Raises:
|
|
ValueError: If weight_init or bias_init shape is incorrect.
|
|
|
|
Inputs:
|
|
- **input** (Tensor) - Tensor of shape :math:`(*, in\_channels)`.
|
|
|
|
Outputs:
|
|
Tensor of shape :math:`(*, out\_channels)`.
|
|
|
|
Supported Platforms:
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
Examples:
|
|
>>> input = Tensor(np.array([[180, 234, 154], [244, 48, 247]]), mindspore.float32)
|
|
>>> net = nn.Dense(3, 4)
|
|
>>> output = net(input)
|
|
>>> print(output.shape)
|
|
(2, 4)
|
|
"""
|
|
|
|
@cell_attr_register(attrs=['has_bias', 'activation'])
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
weight_init='normal',
|
|
bias_init='zeros',
|
|
has_bias=True,
|
|
activation=None):
|
|
super(Dense, self).__init__()
|
|
self.in_channels = Validator.check_positive_int(in_channels)
|
|
self.out_channels = Validator.check_positive_int(out_channels)
|
|
self.has_bias = Validator.check_bool(has_bias)
|
|
self.reshape = P.Reshape()
|
|
self.shape_op = P.Shape()
|
|
|
|
|
|
if isinstance(weight_init, Tensor):
|
|
if weight_init.ndim != 2 or weight_init.shape[0] != out_channels or \
|
|
weight_init.shape[1] != in_channels:
|
|
raise ValueError("Weight init shape error.")
|
|
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
|
|
|
self.bias = None
|
|
if self.has_bias:
|
|
if isinstance(bias_init, Tensor):
|
|
if bias_init.ndim != 1 or bias_init.shape[0] != out_channels:
|
|
raise ValueError("Bias init shape error.")
|
|
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
|
self.bias_add = P.BiasAdd()
|
|
|
|
self.matmul = P.MatMul(transpose_b=True)
|
|
self.activation = get_activation(activation) if isinstance(activation, str) else activation
|
|
if activation is not None and not isinstance(self.activation, (Cell, Primitive)):
|
|
raise TypeError("The activation must be str or Cell or Primitive,"" but got {}.".format(activation))
|
|
self.activation_flag = self.activation is not None
|
|
|
|
def construct(self, x):
|
|
x_shape = self.shape_op(x)
|
|
check_dense_input_shape(x_shape)
|
|
if len(x_shape) != 2:
|
|
x = self.reshape(x, (-1, x_shape[-1]))
|
|
x = self.matmul(x, self.weight)
|
|
if self.has_bias:
|
|
x = self.bias_add(x, self.bias)
|
|
if self.activation_flag:
|
|
x = self.activation(x)
|
|
if len(x_shape) != 2:
|
|
out_shape = x_shape[:-1] + (-1,)
|
|
x = self.reshape(x, out_shape)
|
|
return x
|
|
|
|
def extend_repr(self):
|
|
s = 'input_channels={}, output_channels={}'.format(self.in_channels, self.out_channels)
|
|
if self.has_bias:
|
|
s += ', has_bias={}'.format(self.has_bias)
|
|
if self.activation_flag:
|
|
s += ', activation={}'.format(self.activation)
|
|
return s
|
|
|
|
|
|
@constexpr
|
|
def _is_equal_one(x):
|
|
if x is None:
|
|
return False
|
|
return bool(x.asnumpy().mean() == 1.0)
|
|
|
|
|
|
@constexpr
|
|
def _dtype_check(x_dtype):
|
|
if x_dtype not in [mstype.float32, mstype.float16]:
|
|
raise TypeError("The input type must be float32 or float16.")
|
|
|
|
|
|
@constexpr
|
|
def _is_float_dtype(dtype):
|
|
if dtype in [mstype.float32, mstype.float16]:
|
|
return True
|
|
return False
|
|
|
|
|
|
@constexpr
|
|
def _need_reduce_all(axis):
|
|
if axis == ():
|
|
return True
|
|
return False
|
|
|
|
|
|
class ClipByNorm(Cell):
|
|
r"""
|
|
Clips tensor values to a maximum :math:`L_2`-norm.
|
|
|
|
The output of this layer remains the same if the :math:`L_2`-norm of the input tensor
|
|
is not greater than the argument clip_norm. Otherwise the tensor will be normalized as:
|
|
|
|
.. math::
|
|
\text{output}(X) = \frac{\text{clip_norm} * X}{L_2(X)},
|
|
|
|
where :math:`L_2(X)` is the :math:`L_2`-norm of :math:`X`.
|
|
|
|
Args:
|
|
axis (Union[None, int, tuple(int)]): Compute the L2-norm along the Specific dimension.
|
|
Default: None, all dimensions to calculate.
|
|
|
|
Inputs:
|
|
- **input** (Tensor) - Tensor of shape N-D. The type must be float32 or float16.
|
|
- **clip_norm** (Tensor) - A scalar Tensor of shape :math:`()` or :math:`(1)`.
|
|
Or a tensor shape can be broadcast to input shape.
|
|
|
|
Outputs:
|
|
Tensor, clipped tensor with the same shape as the input, whose type is float32.
|
|
|
|
Supported Platforms:
|
|
``Ascend`` ``GPU``
|
|
|
|
Examples:
|
|
>>> net = nn.ClipByNorm()
|
|
>>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
|
|
>>> clip_norm = Tensor(np.array([100]).astype(np.float32))
|
|
>>> output = net(input, clip_norm)
|
|
>>> print(output.shape)
|
|
(4, 16)
|
|
|
|
"""
|
|
|
|
def __init__(self, axis=None):
|
|
super(ClipByNorm, self).__init__()
|
|
if axis is None:
|
|
axis = ()
|
|
if isinstance(axis, tuple):
|
|
for idx, item in enumerate(axis):
|
|
Validator.check_value_type("axis[%d]" % idx, item, [int], self.cls_name)
|
|
self.axis = Validator.check_value_type('axis', axis, [int, tuple], self.cls_name)
|
|
self.reduce_sum = P.ReduceSum(keep_dims=True)
|
|
self.select_ = P.Select()
|
|
self.greater_ = P.Greater()
|
|
self.cast = P.Cast()
|
|
self.sqrt = P.Sqrt()
|
|
self.max_op = P.Maximum()
|
|
self.shape = P.Shape()
|
|
self.reshape = P.Reshape()
|
|
self.fill = P.Fill()
|
|
self.expand_dims = P.ExpandDims()
|
|
self.dtype = P.DType()
|
|
|
|
def construct(self, x, clip_norm):
|
|
mul_x = F.square(x)
|
|
l2sum = self.cast(self.reduce_sum(mul_x, self.axis), mstype.float32)
|
|
cond = self.greater_(l2sum, 0)
|
|
ones_ = self.fill(self.dtype(cond), self.shape(cond), 1.0)
|
|
l2sum_safe = self.select_(cond, l2sum, self.cast(ones_, self.dtype(l2sum)))
|
|
l2norm = self.select_(cond, self.sqrt(l2sum_safe), l2sum)
|
|
|
|
_dtype_check(self.dtype(x))
|
|
if _is_equal_one(clip_norm):
|
|
intermediate = x
|
|
else:
|
|
intermediate = x * clip_norm
|
|
|
|
max_norm = self.max_op(l2norm, clip_norm)
|
|
if _need_reduce_all(self.axis):
|
|
max_norm = self.expand_dims(max_norm, -1)
|
|
values_clip = self.cast(intermediate, mstype.float32) / max_norm
|
|
values_clip = self.reshape(values_clip, self.shape(x))
|
|
values_clip = identity(values_clip)
|
|
return values_clip
|
|
|
|
|
|
class Norm(Cell):
|
|
r"""
|
|
Computes the norm of vectors, currently including Euclidean norm, i.e., :math:`L_2`-norm.
|
|
|
|
.. math::
|
|
|
|
norm(x) = \sqrt{\sum_{i=1}^{n} (x_i^2)}
|
|
|
|
Args:
|
|
axis (Union[tuple, int]): The axis over which to compute vector norms. Default: ().
|
|
keep_dims (bool): If true, the axis indicated in `axis` are kept with size 1. Otherwise,
|
|
the dimensions in `axis` are removed from the output shape. Default: False.
|
|
|
|
Inputs:
|
|
- **input** (Tensor) - Tensor which is not empty.
|
|
|
|
Outputs:
|
|
Tensor, output tensor with dimensions in 'axis' reduced to 1 will be returned if 'keep_dims' is True;
|
|
otherwise a Tensor with dimensions in 'axis' removed is returned.
|
|
|
|
Supported Platforms:
|
|
``Ascend`` ``GPU``
|
|
|
|
Examples:
|
|
>>> net = nn.Norm(axis=0)
|
|
>>> input = Tensor(np.array([[4, 4, 9, 1], [2, 1, 3, 6]]), mindspore.float32)
|
|
>>> output = net(input)
|
|
>>> print(output)
|
|
[4.472136 4.1231055 9.486833 6.0827627]
|
|
"""
|
|
|
|
def __init__(self, axis=(), keep_dims=False):
|
|
super(Norm, self).__init__()
|
|
Validator.check_value_type("keep_dims", keep_dims, [bool], self.cls_name)
|
|
self.axis = axis
|
|
self.keep_dims = keep_dims
|
|
self.reduce_sum = P.ReduceSum(True)
|
|
self.sqrt = P.Sqrt()
|
|
self.squeeze = P.Squeeze(self.axis)
|
|
|
|
def construct(self, x):
|
|
x = self.sqrt(self.reduce_sum(F.square(x), self.axis))
|
|
|
|
if not self.keep_dims:
|
|
x = self.squeeze(x)
|
|
return x
|
|
|
|
def extend_repr(self):
|
|
return 'axis={}, keep_dims={}'.format(self.axis, self.keep_dims)
|
|
|
|
|
|
class OneHot(Cell):
|
|
"""
|
|
Returns a one-hot tensor.
|
|
|
|
The locations represented by indices in argument `indices` take value on_value,
|
|
while all other locations take value off_value.
|
|
|
|
Note:
|
|
If the input indices is rank :math:`N`, the output will have rank :math:`N+1`. The new
|
|
axis is created at dimension `axis`.
|
|
|
|
If `indices` is a scalar, the output shape will be a vector of length `depth`.
|
|
|
|
If `indices` is a vector of length `features`, the output shape will be:
|
|
|
|
.. code-block::
|
|
|
|
features * depth if axis == -1
|
|
|
|
depth * features if axis == 0
|
|
|
|
If `indices` is a matrix with shape `[batch, features]`, the output shape will be:
|
|
|
|
.. code-block::
|
|
|
|
batch * features * depth if axis == -1
|
|
|
|
batch * depth * features if axis == 1
|
|
|
|
depth * batch * features if axis == 0
|
|
|
|
Args:
|
|
axis (int): Features x depth if axis is -1, depth x features
|
|
if axis is 0. Default: -1.
|
|
depth (int): A scalar defining the depth of the one hot dimension. Default: 1.
|
|
on_value (float): A scalar defining the value to fill in output[i][j]
|
|
when indices[j] = i. Default: 1.0.
|
|
off_value (float): A scalar defining the value to fill in output[i][j]
|
|
when indices[j] != i. Default: 0.0.
|
|
dtype (:class:`mindspore.dtype`): Data type of 'on_value' and 'off_value', not the
|
|
data type of indices. Default: mindspore.float32.
|
|
|
|
Inputs:
|
|
- **indices** (Tensor) - A tensor of indices of data type mindspore.int32 and arbitrary shape.
|
|
|
|
Outputs:
|
|
Tensor, the one-hot tensor of data type `dtype` with dimension at `axis` expanded to `depth` and filled with
|
|
on_value and off_value.
|
|
|
|
Supported Platforms:
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
Examples:
|
|
>>> net = nn.OneHot(depth=4, axis=1)
|
|
>>> indices = Tensor([[1, 3], [0, 2]], dtype=mindspore.int32)
|
|
>>> output = net(indices)
|
|
>>> print(output)
|
|
[[[0. 0.]
|
|
[1. 0.]
|
|
[0. 0.]
|
|
[0. 1.]]
|
|
[[1. 0.]
|
|
[0. 0.]
|
|
[0. 1.]
|
|
[0. 0.]]]
|
|
"""
|
|
|
|
def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, dtype=mstype.float32):
|
|
super(OneHot, self).__init__()
|
|
self.onehot = P.OneHot(axis)
|
|
self.depth = depth
|
|
self.dtype = dtype
|
|
self.on_value = on_value
|
|
self.off_value = off_value
|
|
|
|
def construct(self, indices):
|
|
return self.onehot(indices, self.depth, F.cast(self.on_value, self.dtype), F.cast(self.off_value, self.dtype))
|
|
|
|
|
|
class Pad(Cell):
|
|
"""
|
|
Pads the input tensor according to the paddings and mode.
|
|
|
|
Args:
|
|
paddings (tuple): The shape of parameter `paddings` is (N, 2). N is the rank of input data. All elements of
|
|
paddings are int type. For `D` th dimension of input, paddings[D, 0] indicates how many sizes to be
|
|
extended ahead of the `D` th dimension of the input tensor, and paddings[D, 1] indicates how many sizes to
|
|
be extended behind of the `D` th dimension of the input tensor. The padded size of each dimension D of the
|
|
output is:
|
|
|
|
.. code-block::
|
|
|
|
paddings[D, 0] + input_x.dim_size(D) + paddings[D, 1]
|
|
|
|
mode (str): Specifies padding mode. The optional values are "CONSTANT", "REFLECT", "SYMMETRIC".
|
|
Default: "CONSTANT".
|
|
|
|
Inputs:
|
|
- **input_x** (Tensor) - The input tensor.
|
|
|
|
Outputs:
|
|
Tensor, the tensor after padding.
|
|
|
|
- If `mode` is "CONSTANT", it fills the edge with 0, regardless of the values of the `input_x`.
|
|
If the `input_x` is [[1,2,3], [4,5,6], [7,8,9]] and `paddings` is [[1,1], [2,2]], then the
|
|
Outputs is [[0,0,0,0,0,0,0], [0,0,1,2,3,0,0], [0,0,4,5,6,0,0], [0,0,7,8,9,0,0], [0,0,0,0,0,0,0]].
|
|
- If `mode` is "REFLECT", it uses a way of symmetrical copying through the axis of symmetry to fill in.
|
|
If the `input_x` is [[1,2,3], [4,5,6], [7,8,9]] and `paddings` is [[1,1], [2,2]], then the
|
|
Outputs is [[6,5,4,5,6,5,4], [3,2,1,2,3,2,1], [6,5,4,5,6,5,4], [9,8,7,8,9,8,7], [6,5,4,5,6,5,4]].
|
|
- If `mode` is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied
|
|
according to the symmetry axis, except that it includes the symmetry axis. If the `input_x`
|
|
is [[1,2,3], [4,5,6], [7,8,9]] and `paddings` is [[1,1], [2,2]], then the Outputs is
|
|
[[2,1,1,2,3,3,2], [2,1,1,2,3,3,2], [5,4,4,5,6,6,5], [8,7,7,8,9,9,8], [8,7,7,8,9,9,8]].
|
|
|
|
Supported Platforms:
|
|
``Ascend`` ``GPU``
|
|
|
|
Examples:
|
|
>>> from mindspore import Tensor
|
|
>>> from mindspore.ops import operations as P
|
|
>>> import mindspore.nn as nn
|
|
>>> import numpy as np
|
|
>>> class Net(nn.Cell):
|
|
... def __init__(self):
|
|
... super(Net, self).__init__()
|
|
... self.pad = nn.Pad(paddings=((1, 1), (2, 2)), mode="CONSTANT")
|
|
... def construct(self, x):
|
|
... return self.pad(x)
|
|
>>> x = np.array([[0.3, 0.5, 0.2], [0.5, 0.7, 0.3]], dtype=np.float32)
|
|
>>> pad = Net()
|
|
>>> output = pad(Tensor(x))
|
|
>>> print(output)
|
|
[[0. 0. 0. 0. 0. 0. 0. ]
|
|
[0. 0. 0.3 0.5 0.2 0. 0. ]
|
|
[0. 0. 0.5 0.7 0.3 0. 0. ]
|
|
[0. 0. 0. 0. 0. 0. 0. ]]
|
|
"""
|
|
|
|
def __init__(self, paddings, mode="CONSTANT"):
|
|
super(Pad, self).__init__()
|
|
self.mode = mode
|
|
self.paddings = paddings
|
|
Validator.check_string(self.mode, ["CONSTANT", "REFLECT", "SYMMETRIC"], 'mode', self.cls_name)
|
|
if not isinstance(paddings, tuple):
|
|
raise TypeError('Paddings must be tuple type.')
|
|
for item in paddings:
|
|
if len(item) != 2:
|
|
raise ValueError('The shape of paddings must be (n, 2).')
|
|
if len(paddings) > 4:
|
|
raise ValueError('Only padding up to 4 dims is supported')
|
|
if mode == "CONSTANT":
|
|
self.pad = P.Pad(self.paddings)
|
|
else:
|
|
self.paddings = Tensor(np.array(self.paddings))
|
|
self.pad = P.MirrorPad(mode=mode)
|
|
|
|
def construct(self, x):
|
|
if self.mode == "CONSTANT":
|
|
x = self.pad(x)
|
|
else:
|
|
x = self.pad(x, self.paddings)
|
|
return x
|
|
|
|
|
|
@constexpr
|
|
def bilinear(shape, size, scale, align_corners):
|
|
"""Check input and calculate shape"""
|
|
if not isinstance(align_corners, bool):
|
|
raise TypeError("align_corners should be type boolean")
|
|
if size is None and scale is None:
|
|
raise ValueError("size and scale both none")
|
|
if size is not None and scale is not None:
|
|
raise ValueError("size and scale both not none")
|
|
if size is not None:
|
|
if not isinstance(size, (tuple, list)):
|
|
raise ValueError("size must be tuple or list")
|
|
Validator.check_int(len(size), 2, Rel.EQ, "size", "bilinear")
|
|
Validator.check_int(size[0], 1, Rel.GE, "size[0]", "bilinear")
|
|
Validator.check_int(size[1], 1, Rel.GE, "size[1]", "bilinear")
|
|
return size
|
|
Validator.check_int(scale, 1, Rel.GE, "scale factor", "bilinear")
|
|
ret = (scale * shape[2], scale * shape[3])
|
|
return ret
|
|
|
|
|
|
class ResizeBilinear(Cell):
|
|
r"""
|
|
Samples the input tensor to the given size or scale_factor by using bilinear interpolate.
|
|
|
|
Inputs:
|
|
- **x** (Tensor) - Tensor to be resized. Input tensor must be a 4-D tensor with shape:
|
|
math:`(batch, channels, height, width)`, with data type of float16 or float32.
|
|
- **size** (Union[tuple[int], list[int]]): A tuple or list of 2 int elements '(new_height, new_width)',
|
|
the new size of the tensor. One and only one of size and scale_factor can be set to None. Default: None.
|
|
- **scale_factor** (int): The scale factor of new size of the tensor. The value should be positive integer.
|
|
One and only one of size and scale_factor can be set to None. Default: None.
|
|
- **align_corners** (bool): If true, rescale input by '(new_height - 1) / (height - 1)', which exactly aligns
|
|
the 4 corners of images and resized images. If false, rescale by 'new_height / height'. Default: False.
|
|
|
|
Outputs:
|
|
Resized tensor.
|
|
If size is set, the result is 4-D tensor with shape:math:`(batch, channels, new_height, new_width)`
|
|
in float32.
|
|
If scale is set, the result is 4-D tensor with shape:math:`(batch, channels, scale_factor * height,
|
|
scale_factor * width)` in float32
|
|
|
|
Supported Platforms:
|
|
``Ascend``
|
|
|
|
Examples:
|
|
>>> tensor = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mindspore.float32)
|
|
>>> resize_bilinear = nn.ResizeBilinear()
|
|
>>> result = resize_bilinear(tensor, size=(5,5))
|
|
>>> print(result.shape)
|
|
(1, 1, 5, 5)
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(ResizeBilinear, self).__init__()
|
|
|
|
def construct(self, x, size=None, scale_factor=None, align_corners=False):
|
|
shape = bilinear(x.shape, size, scale_factor, align_corners)
|
|
resize_bilinear = P.ResizeBilinear(shape, align_corners)
|
|
return resize_bilinear(x)
|
|
|
|
|
|
class Unfold(Cell):
|
|
"""
|
|
Extract patches from images.
|
|
The input tensor must be a 4-D tensor and the data format is NCHW.
|
|
|
|
Args:
|
|
ksizes (Union[tuple[int], list[int]]): The size of sliding window, must be a tuple or a list of integers,
|
|
and the format is [1, ksize_row, ksize_col, 1].
|
|
strides (Union[tuple[int], list[int]]): Distance between the centers of the two consecutive patches,
|
|
must be a tuple or list of int, and the format is [1, stride_row, stride_col, 1].
|
|
rates (Union[tuple[int], list[int]]): In each extracted patch, the gap between the corresponding dimension
|
|
pixel positions, must be a tuple or a list of integers, and the format is [1, rate_row, rate_col, 1].
|
|
padding (str): The type of padding algorithm, is a string whose value is "same" or "valid", not case sensitive.
|
|
Default: "valid".
|
|
|
|
- same: Means that the patch can take the part beyond the original image, and this part is filled with 0.
|
|
|
|
- valid: Means that the taken patch area must be completely covered in the original image.
|
|
|
|
Inputs:
|
|
- **input_x** (Tensor) - A 4-D tensor whose shape is [in_batch, in_depth, in_row, in_col] and
|
|
data type is number.
|
|
|
|
Outputs:
|
|
Tensor, a 4-D tensor whose data type is same as `input_x`,
|
|
and the shape is [out_batch, out_depth, out_row, out_col] where `out_batch` is the same as the `in_batch`.
|
|
|
|
.. code-block::
|
|
|
|
out_depth = ksize_row * ksize_col * in_depth
|
|
|
|
out_row = (in_row - (ksize_row + (ksize_row - 1) * (rate_row - 1))) // stride_row + 1
|
|
|
|
out_col = (in_col - (ksize_col + (ksize_col - 1) * (rate_col - 1))) // stride_col + 1
|
|
|
|
Supported Platforms:
|
|
``Ascend``
|
|
|
|
Examples:
|
|
>>> net = Unfold(ksizes=[1, 2, 2, 1], strides=[1, 2, 2, 1], rates=[1, 2, 2, 1])
|
|
>>> image = Tensor(np.ones([2, 3, 6, 6]), dtype=mstype.float16)
|
|
>>> output = net(image)
|
|
>>> print(output.shape)
|
|
(2, 12, 2, 2)
|
|
"""
|
|
|
|
def __init__(self, ksizes, strides, rates, padding="valid"):
|
|
super(Unfold, self).__init__()
|
|
|
|
def _check_tuple_or_list(arg_name, arg_val, prim_name):
|
|
Validator.check_value_type(f"{arg_name}s", ksizes, [tuple, list], self.cls_name)
|
|
if len(arg_val) != 4 or arg_val[0] != 1 or arg_val[3] != 1:
|
|
raise ValueError(f"For \'{prim_name}\' the format of {arg_name}s should be [1, {arg_name}_row, "
|
|
f"{arg_name}_col, 1], but got {arg_val}.")
|
|
if not isinstance(arg_val[1], int) or not isinstance(arg_val[2], int) or arg_val[1] < 1 or arg_val[2] < 1:
|
|
raise ValueError(f"For '{prim_name}' the {arg_name}_row and {arg_name}_col in {arg_name}s should be an "
|
|
f"positive integer number, but got {arg_name}_row is {arg_val[1]}, {arg_name}_col "
|
|
f"is {arg_val[2]}")
|
|
|
|
_check_tuple_or_list("ksize", ksizes, self.cls_name)
|
|
_check_tuple_or_list("stride", strides, self.cls_name)
|
|
_check_tuple_or_list("rate", rates, self.cls_name)
|
|
ksizes = ksizes[0], ksizes[3], ksizes[1], ksizes[2]
|
|
strides = strides[0], strides[3], strides[1], strides[2]
|
|
rates = rates[0], rates[3], rates[1], rates[2]
|
|
self.extract_image_patches = inner.ExtractImagePatches(ksizes, strides, rates, padding)
|
|
|
|
def construct(self, input_x):
|
|
result = self.extract_image_patches(input_x)
|
|
return result
|
|
|
|
|
|
@constexpr
|
|
def tril(x_shape, x_dtype, k):
|
|
Validator.check_int(len(x_shape), 1, Rel.GE, "x rank", "tril")
|
|
Validator.check_is_int(k, "k value", "tril")
|
|
mask = np.tril(np.ones(x_shape), k)
|
|
return Tensor(mask, x_dtype)
|
|
|
|
|
|
class Tril(Cell):
|
|
"""
|
|
Returns a tensor with elements above the kth diagonal zeroed.
|
|
|
|
Inputs:
|
|
- **x** (Tensor) - The input tensor.
|
|
- **k** (Int) - The index of diagonal. Default: 0
|
|
|
|
Outputs:
|
|
Tensor, has the same type as input `x`.
|
|
|
|
Supported Platforms:
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
Examples:
|
|
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
|
|
>>> tril = nn.Tril()
|
|
>>> result = tril(x)
|
|
>>> print(result)
|
|
[[1 0]
|
|
[3 4]]
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(Tril, self).__init__()
|
|
self.dtype = P.DType()
|
|
self.mul = P.Mul()
|
|
self.cast = P.Cast()
|
|
|
|
def construct(self, x, k=0):
|
|
assist = tril(x.shape, self.dtype(x), k)
|
|
result = self.mul(self.cast(x, mstype.float32), self.cast(assist, mstype.float32))
|
|
return self.cast(result, self.dtype(x))
|
|
|
|
|
|
@constexpr
|
|
def triu(x_shape, x_dtype, k):
|
|
Validator.check_int(len(x_shape), 1, Rel.GE, "x rank", "triu")
|
|
Validator.check_is_int(k, "k value", "triu")
|
|
mask = np.triu(np.ones(x_shape), k)
|
|
return Tensor(mask, x_dtype)
|
|
|
|
|
|
class Triu(Cell):
|
|
"""
|
|
Returns a tensor with elements below the kth diagonal zeroed.
|
|
|
|
Inputs:
|
|
- **x** (Tensor) - The input tensor.
|
|
- **k** (Int) - The index of diagonal. Default: 0
|
|
|
|
Outputs:
|
|
Tensor, has the same type as input `x`.
|
|
|
|
Supported Platforms:
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
Examples:
|
|
>>> x = Tensor(np.array([[1, 2], [3, 4]]))
|
|
>>> triu = nn.Triu()
|
|
>>> result = triu(x)
|
|
>>> print(result)
|
|
[[1 2]
|
|
[0 4]]
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(Triu, self).__init__()
|
|
self.dtype = P.DType()
|
|
self.mul = P.Mul()
|
|
self.cast = P.Cast()
|
|
|
|
def construct(self, x, k=0):
|
|
assist = triu(x.shape, self.dtype(x), k)
|
|
result = self.mul(self.cast(x, mstype.float32), self.cast(assist, mstype.float32))
|
|
return self.cast(result, self.dtype(x))
|
|
|
|
|
|
@constexpr
|
|
def _get_matrix_diag_assist(x_shape, x_dtype):
|
|
Validator.check_int(len(x_shape), 1, Rel.GE, "x rank", "_get_matrix_diag_assist")
|
|
base_eye = np.eye(x_shape[-1], x_shape[-1]).reshape(-1)
|
|
assist = np.tile(base_eye, x_shape[:-1]).reshape(x_shape + (x_shape[-1],))
|
|
return Tensor(assist, x_dtype)
|
|
|
|
|
|
@constexpr
|
|
def _get_matrix_diag_part_assist(x_shape, x_dtype):
|
|
Validator.check_int(len(x_shape), 2, Rel.GE, "x rank", "_get_matrix_diag_part_assist")
|
|
base_eye = np.eye(x_shape[-2], x_shape[-1]).reshape(-1)
|
|
assist = np.tile(base_eye, x_shape[:-2]).reshape(x_shape)
|
|
return Tensor(assist, x_dtype)
|
|
|
|
|
|
class MatrixDiag(Cell):
|
|
r"""
|
|
Returns a batched diagonal tensor with a given batched diagonal values.
|
|
|
|
Assume `x` has :math:`k` dimensions :math:`[I, J, K, ..., N]`, then the output is a tensor of rank
|
|
:math:`k+1` with dimensions :math:`[I, J, K, ..., N, N]` where:
|
|
|
|
.. code-block::
|
|
|
|
output[i, j, k, ..., m, n] = 1{m=n} * x[i, j, k, ..., n]
|
|
|
|
Inputs:
|
|
- **x** (Tensor) - The diagonal values. It can be one of the following data types:
|
|
float32, float16, int32, int8, and uint8.
|
|
|
|
Outputs:
|
|
Tensor, has the same type as input `x`. The shape must be x.shape + (x.shape[-1], ).
|
|
|
|
Supported Platforms:
|
|
``Ascend``
|
|
|
|
Examples:
|
|
>>> x = Tensor(np.array([1, -1]), mstype.float32)
|
|
>>> matrix_diag = nn.MatrixDiag()
|
|
>>> output = matrix_diag(x)
|
|
>>> print(output)
|
|
[[ 1. 0.]
|
|
[ 0. -1.]]
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(MatrixDiag, self).__init__()
|
|
self.matrix_diag = inner.MatrixDiag()
|
|
self.dtype = P.DType()
|
|
|
|
def construct(self, input_x):
|
|
x_shape = F.shape(input_x)
|
|
x_dtype = self.dtype(input_x)
|
|
assist = _get_matrix_diag_assist(x_shape, x_dtype)
|
|
out_matrix_diag = self.matrix_diag(input_x, assist)
|
|
return out_matrix_diag
|
|
|
|
|
|
class MatrixDiagPart(Cell):
|
|
r"""
|
|
Returns the batched diagonal part of a batched tensor.
|
|
|
|
Assume `x` has :math:`k` dimensions :math:`[I, J, K, ..., M, N]`, then the output is a tensor of rank
|
|
:math:`k-1` with dimensions :math:`[I, J, K, ..., min(M, N)]` where:
|
|
|
|
.. code-block::
|
|
|
|
output[i, j, k, ..., n] = x[i, j, k, ..., n, n]
|
|
|
|
Inputs:
|
|
- **x** (Tensor) - The batched tensor. It can be one of the following data types:
|
|
float32, float16, int32, int8, and uint8.
|
|
|
|
Outputs:
|
|
Tensor, has the same type as input `x`. The shape must be x.shape[:-2] + [min(x.shape[-2:])].
|
|
|
|
Supported Platforms:
|
|
``Ascend``
|
|
|
|
Examples:
|
|
>>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
|
|
>>> matrix_diag_part = nn.MatrixDiagPart()
|
|
>>> output = matrix_diag_part(x)
|
|
>>> print(output)
|
|
[[-1. 1.]
|
|
[-1. 1.]
|
|
[-1. 1.]]
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(MatrixDiagPart, self).__init__()
|
|
self.matrix_diag_part = inner.MatrixDiagPart()
|
|
self.dtype = P.DType()
|
|
|
|
def construct(self, input_x):
|
|
x_shape = F.shape(input_x)
|
|
x_dtype = self.dtype(input_x)
|
|
assist = _get_matrix_diag_part_assist(x_shape, x_dtype)
|
|
out_matrix_diag_part = self.matrix_diag_part(input_x, assist)
|
|
return out_matrix_diag_part
|
|
|
|
|
|
class MatrixSetDiag(Cell):
|
|
r"""
|
|
Modifies the batched diagonal part of a batched tensor.
|
|
|
|
Assume `x` has :math:`k+1` dimensions :math:`[I, J, K, ..., M, N]` and `diagonal` has :math:`k`
|
|
dimensions :math:`[I, J, K, ..., min(M, N)]`. Then the output is a tensor of rank :math:`k+1` with dimensions
|
|
:math:`[I, J, K, ..., M, N]` where:
|
|
|
|
.. code-block::
|
|
|
|
output[i, j, k, ..., m, n] = diagnoal[i, j, k, ..., n] for m == n
|
|
|
|
output[i, j, k, ..., m, n] = x[i, j, k, ..., m, n] for m != n
|
|
|
|
Inputs:
|
|
- **x** (Tensor) - The batched tensor. Rank k+1, where k >= 1. It can be one of the following data types:
|
|
float32, float16, int32, int8, and uint8.
|
|
- **diagonal** (Tensor) - The diagonal values. Must have the same type as input `x`. Rank k, where k >= 1.
|
|
|
|
Outputs:
|
|
Tensor, has the same type and shape as input `x`.
|
|
|
|
Supported Platforms:
|
|
``Ascend``
|
|
|
|
Examples:
|
|
>>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
|
|
>>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32)
|
|
>>> matrix_set_diag = nn.MatrixSetDiag()
|
|
>>> output = matrix_set_diag(x, diagonal)
|
|
>>> print(output)
|
|
[[[-1. 0.]
|
|
[ 0. 2.]]
|
|
[[-1. 0.]
|
|
[ 0. 1.]]
|
|
[[-1. 0.]
|
|
[ 0. 1.]]]
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(MatrixSetDiag, self).__init__()
|
|
self.matrix_set_diag = inner.MatrixSetDiag()
|
|
self.dtype = P.DType()
|
|
|
|
def construct(self, input_x, diagonal):
|
|
x_shape = F.shape(input_x)
|
|
x_dtype = self.dtype(input_x)
|
|
assist = _get_matrix_diag_part_assist(x_shape, x_dtype)
|
|
out_matrix_set_diag = self.matrix_set_diag(input_x, diagonal, assist)
|
|
return out_matrix_set_diag
|