You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
5.9 KiB
194 lines
5.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
Test nn.probability.distribution.Exponential.
|
|
"""
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
import mindspore.nn.probability.distribution as msd
|
|
from mindspore import dtype
|
|
from mindspore import Tensor
|
|
|
|
|
|
def test_arguments():
|
|
"""
|
|
Args passing during initialization.
|
|
"""
|
|
e = msd.Exponential()
|
|
assert isinstance(e, msd.Distribution)
|
|
e = msd.Exponential([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
|
|
assert isinstance(e, msd.Distribution)
|
|
|
|
def test_rate():
|
|
"""
|
|
Invalid rate.
|
|
"""
|
|
with pytest.raises(ValueError):
|
|
msd.Exponential([-0.1], dtype=dtype.float32)
|
|
with pytest.raises(ValueError):
|
|
msd.Exponential([0.0], dtype=dtype.float32)
|
|
|
|
class ExponentialProb(nn.Cell):
|
|
"""
|
|
Exponential distribution: initialize with rate.
|
|
"""
|
|
def __init__(self):
|
|
super(ExponentialProb, self).__init__()
|
|
self.e = msd.Exponential(0.5, dtype=dtype.float32)
|
|
|
|
def construct(self, value):
|
|
prob = self.e.prob(value)
|
|
log_prob = self.e.log_prob(value)
|
|
cdf = self.e.cdf(value)
|
|
log_cdf = self.e.log_cdf(value)
|
|
sf = self.e.survival_function(value)
|
|
log_sf = self.e.log_survival(value)
|
|
return prob + log_prob + cdf + log_cdf + sf + log_sf
|
|
|
|
def test_exponential_prob():
|
|
"""
|
|
Test probability functions: passing value through construct.
|
|
"""
|
|
net = ExponentialProb()
|
|
value = Tensor([0.2, 0.3, 5.0, 2, 3.9], dtype=dtype.float32)
|
|
ans = net(value)
|
|
assert isinstance(ans, Tensor)
|
|
|
|
class ExponentialProb1(nn.Cell):
|
|
"""
|
|
Exponential distribution: initialize without rate.
|
|
"""
|
|
def __init__(self):
|
|
super(ExponentialProb1, self).__init__()
|
|
self.e = msd.Exponential(dtype=dtype.float32)
|
|
|
|
def construct(self, value, rate):
|
|
prob = self.e.prob(value, rate)
|
|
log_prob = self.e.log_prob(value, rate)
|
|
cdf = self.e.cdf(value, rate)
|
|
log_cdf = self.e.log_cdf(value, rate)
|
|
sf = self.e.survival_function(value, rate)
|
|
log_sf = self.e.log_survival(value, rate)
|
|
return prob + log_prob + cdf + log_cdf + sf + log_sf
|
|
|
|
def test_exponential_prob1():
|
|
"""
|
|
Test probability functions: passing value/rate through construct.
|
|
"""
|
|
net = ExponentialProb1()
|
|
value = Tensor([0.2, 0.9, 1, 2, 3], dtype=dtype.float32)
|
|
rate = Tensor([0.5], dtype=dtype.float32)
|
|
ans = net(value, rate)
|
|
assert isinstance(ans, Tensor)
|
|
|
|
class ExponentialKl(nn.Cell):
|
|
"""
|
|
Test class: kl_loss between Exponential distributions.
|
|
"""
|
|
def __init__(self):
|
|
super(ExponentialKl, self).__init__()
|
|
self.e1 = msd.Exponential(0.7, dtype=dtype.float32)
|
|
self.e2 = msd.Exponential(dtype=dtype.float32)
|
|
|
|
def construct(self, rate_b, rate_a):
|
|
kl1 = self.e1.kl_loss('Exponential', rate_b)
|
|
kl2 = self.e2.kl_loss('Exponential', rate_b, rate_a)
|
|
return kl1 + kl2
|
|
|
|
def test_kl():
|
|
"""
|
|
Test kl_loss function.
|
|
"""
|
|
net = ExponentialKl()
|
|
rate_b = Tensor([0.3], dtype=dtype.float32)
|
|
rate_a = Tensor([0.7], dtype=dtype.float32)
|
|
ans = net(rate_b, rate_a)
|
|
assert isinstance(ans, Tensor)
|
|
|
|
class ExponentialCrossEntropy(nn.Cell):
|
|
"""
|
|
Test class: cross_entropy of Exponential distribution.
|
|
"""
|
|
def __init__(self):
|
|
super(ExponentialCrossEntropy, self).__init__()
|
|
self.e1 = msd.Exponential(0.3, dtype=dtype.float32)
|
|
self.e2 = msd.Exponential(dtype=dtype.float32)
|
|
|
|
def construct(self, rate_b, rate_a):
|
|
h1 = self.e1.cross_entropy('Exponential', rate_b)
|
|
h2 = self.e2.cross_entropy('Exponential', rate_b, rate_a)
|
|
return h1 + h2
|
|
|
|
def test_cross_entropy():
|
|
"""
|
|
Test cross_entropy between Exponential distributions.
|
|
"""
|
|
net = ExponentialCrossEntropy()
|
|
rate_b = Tensor([0.3], dtype=dtype.float32)
|
|
rate_a = Tensor([0.7], dtype=dtype.float32)
|
|
ans = net(rate_b, rate_a)
|
|
assert isinstance(ans, Tensor)
|
|
|
|
class ExponentialBasics(nn.Cell):
|
|
"""
|
|
Test class: basic mean/sd/mode/entropy function.
|
|
"""
|
|
def __init__(self):
|
|
super(ExponentialBasics, self).__init__()
|
|
self.e = msd.Exponential([0.3, 0.5], dtype=dtype.float32)
|
|
|
|
def construct(self):
|
|
mean = self.e.mean()
|
|
sd = self.e.sd()
|
|
var = self.e.var()
|
|
mode = self.e.mode()
|
|
entropy = self.e.entropy()
|
|
return mean + sd + var + mode + entropy
|
|
|
|
def test_bascis():
|
|
"""
|
|
Test mean/sd/var/mode/entropy functionality of Exponential distribution.
|
|
"""
|
|
net = ExponentialBasics()
|
|
ans = net()
|
|
assert isinstance(ans, Tensor)
|
|
|
|
|
|
class ExpConstruct(nn.Cell):
|
|
"""
|
|
Exponential distribution: going through construct.
|
|
"""
|
|
def __init__(self):
|
|
super(ExpConstruct, self).__init__()
|
|
self.e = msd.Exponential(0.5, dtype=dtype.float32)
|
|
self.e1 = msd.Exponential(dtype=dtype.float32)
|
|
|
|
def construct(self, value, rate):
|
|
prob = self.e('prob', value)
|
|
prob1 = self.e('prob', value, rate)
|
|
prob2 = self.e1('prob', value, rate)
|
|
return prob + prob1 + prob2
|
|
|
|
def test_exp_construct():
|
|
"""
|
|
Test probability function going through construct.
|
|
"""
|
|
net = ExpConstruct()
|
|
value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
|
|
probs = Tensor([0.5], dtype=dtype.float32)
|
|
ans = net(value, probs)
|
|
assert isinstance(ans, Tensor)
|