You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/distribution/test_uniform.py

209 lines
6.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.Uniform.
"""
import numpy as np
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_uniform_shape_errpr():
"""
Invalid shapes.
"""
with pytest.raises(ValueError):
msd.Uniform([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
def test_arguments():
"""
Args passing during initialization.
"""
u = msd.Uniform()
assert isinstance(u, msd.Distribution)
u = msd.Uniform([3.0], [4.0], dtype=dtype.float32)
assert isinstance(u, msd.Distribution)
def test_invalid_range():
"""
Test range of uniform distribution.
"""
with pytest.raises(ValueError):
msd.Uniform(0.0, 0.0, dtype=dtype.float32)
with pytest.raises(ValueError):
msd.Uniform(1.0, 0.0, dtype=dtype.float32)
class UniformProb(nn.Cell):
"""
Uniform distribution: initialize with low/high.
"""
def __init__(self):
super(UniformProb, self).__init__()
self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32)
def construct(self, value):
prob = self.u.prob(value)
log_prob = self.u.log_prob(value)
cdf = self.u.cdf(value)
log_cdf = self.u.log_cdf(value)
sf = self.u.survival_function(value)
log_sf = self.u.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_uniform_prob():
"""
Test probability functions: passing value through construct.
"""
net = UniformProb()
value = Tensor([3.1, 3.2, 3.3, 3.4], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class UniformProb1(nn.Cell):
"""
Uniform distribution: initialize without low/high.
"""
def __init__(self):
super(UniformProb1, self).__init__()
self.u = msd.Uniform(dtype=dtype.float32)
def construct(self, value, low, high):
prob = self.u.prob(value, low, high)
log_prob = self.u.log_prob(value, low, high)
cdf = self.u.cdf(value, low, high)
log_cdf = self.u.log_cdf(value, low, high)
sf = self.u.survival_function(value, low, high)
log_sf = self.u.log_survival(value, low, high)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_uniform_prob1():
"""
Test probability functions: passing low/high, value through construct.
"""
net = UniformProb1()
value = Tensor([0.1, 0.2, 0.3, 0.9], dtype=dtype.float32)
low = Tensor([0.0], dtype=dtype.float32)
high = Tensor([1.0], dtype=dtype.float32)
ans = net(value, low, high)
assert isinstance(ans, Tensor)
class UniformKl(nn.Cell):
"""
Test class: kl_loss of Uniform distribution.
"""
def __init__(self):
super(UniformKl, self).__init__()
self.u1 = msd.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.u2 = msd.Uniform(dtype=dtype.float32)
def construct(self, low_b, high_b, low_a, high_a):
kl1 = self.u1.kl_loss('Uniform', low_b, high_b)
kl2 = self.u2.kl_loss('Uniform', low_b, high_b, low_a, high_a)
return kl1 + kl2
def test_kl():
"""
Test kl_loss.
"""
net = UniformKl()
low_b = Tensor(np.array([0.0]).astype(np.float32), dtype=dtype.float32)
high_b = Tensor(np.array([5.0]).astype(np.float32), dtype=dtype.float32)
low_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
high_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
ans = net(low_b, high_b, low_a, high_a)
assert isinstance(ans, Tensor)
class UniformCrossEntropy(nn.Cell):
"""
Test class: cross_entropy of Uniform distribution.
"""
def __init__(self):
super(UniformCrossEntropy, self).__init__()
self.u1 = msd.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
self.u2 = msd.Uniform(dtype=dtype.float32)
def construct(self, low_b, high_b, low_a, high_a):
h1 = self.u1.cross_entropy('Uniform', low_b, high_b)
h2 = self.u2.cross_entropy('Uniform', low_b, high_b, low_a, high_a)
return h1 + h2
def test_cross_entropy():
"""
Test cross_entropy between Unifrom distributions.
"""
net = UniformCrossEntropy()
low_b = Tensor(np.array([0.0]).astype(np.float32), dtype=dtype.float32)
high_b = Tensor(np.array([5.0]).astype(np.float32), dtype=dtype.float32)
low_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
high_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
ans = net(low_b, high_b, low_a, high_a)
assert isinstance(ans, Tensor)
class UniformBasics(nn.Cell):
"""
Test class: basic mean/sd/var/mode/entropy function.
"""
def __init__(self):
super(UniformBasics, self).__init__()
self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32)
def construct(self):
mean = self.u.mean()
sd = self.u.sd()
var = self.u.var()
entropy = self.u.entropy()
return mean + sd + var + entropy
def test_bascis():
"""
Test mean/sd/var/mode/entropy functionality of Uniform.
"""
net = UniformBasics()
ans = net()
assert isinstance(ans, Tensor)
class UniConstruct(nn.Cell):
"""
Unifrom distribution: going through construct.
"""
def __init__(self):
super(UniConstruct, self).__init__()
self.u = msd.Uniform(-4.0, 4.0)
self.u1 = msd.Uniform()
def construct(self, value, low, high):
prob = self.u('prob', value)
prob1 = self.u('prob', value, low, high)
prob2 = self.u1('prob', value, low, high)
return prob + prob1 + prob2
def test_uniform_construct():
"""
Test probability function going through construct.
"""
net = UniConstruct()
value = Tensor([-5.0, 0.0, 1.0, 5.0], dtype=dtype.float32)
low = Tensor([-1.0], dtype=dtype.float32)
high = Tensor([1.0], dtype=dtype.float32)
ans = net(value, low, high)
assert isinstance(ans, Tensor)