You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							397 lines
						
					
					
						
							12 KiB
						
					
					
				
			
		
		
	
	
							397 lines
						
					
					
						
							12 KiB
						
					
					
				| # Copyright 2020 Huawei Technologies Co., Ltd
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| # http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| # ============================================================================
 | |
| """ test_cell_bprop """
 | |
| import numpy as np
 | |
| import pytest
 | |
| 
 | |
| import mindspore.common.dtype as mstype
 | |
| import mindspore.nn as nn
 | |
| from mindspore import Parameter
 | |
| from mindspore import context
 | |
| from mindspore.common.initializer import initializer
 | |
| from mindspore.common.tensor import Tensor
 | |
| from mindspore.ops import composite as C
 | |
| from mindspore.ops import operations as P
 | |
| from ....mindspore_test_framework.utils.bprop_util import bprop
 | |
| 
 | |
| 
 | |
| def setup_module(module):
 | |
|     context.set_context(mode=context.PYNATIVE_MODE)
 | |
| 
 | |
| 
 | |
| class MulAdd(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super(MulAdd, self).__init__()
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return 2 * x + y
 | |
| 
 | |
|     def bprop(self, x, y, out, dout):
 | |
|         # In this test case, The user defined bprop is wrong defined purposely to distinguish from ad result
 | |
|         return 2 * dout, 2 * y
 | |
| 
 | |
| 
 | |
| def test_grad_mul_add():
 | |
|     mul_add = MulAdd()
 | |
|     assert C.grad_all(mul_add)(1, 2) == (2, 4)
 | |
| 
 | |
| 
 | |
| class InlineMulADD(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super(InlineMulADD, self).__init__()
 | |
|         self.mul_add = MulAdd()
 | |
|         self.param = 2
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return self.mul_add(x, y) + x + self.param * y
 | |
| 
 | |
| 
 | |
| def test_grad_inline_mul_add():
 | |
|     inline_mul_add = InlineMulADD()
 | |
|     assert C.grad_all(inline_mul_add)(1, 2) == (3, 6)
 | |
| 
 | |
| 
 | |
| class WithParameter(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super(WithParameter, self).__init__()
 | |
|         self.param1 = Parameter(1, 'param1')
 | |
|         self.param2 = Parameter(2, 'param2')
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return self.param1 * self.param2 * x + y
 | |
| 
 | |
|     def bprop(self, x, y, out, dout):
 | |
|         # In this test case, The user defined bprop is wrong defined purposely to distinguish from ad result
 | |
|         return self.param1 * self.param2 * dout, 2 * y
 | |
| 
 | |
| 
 | |
| def test_with_param():
 | |
|     with_param = WithParameter()
 | |
|     with pytest.raises(RuntimeError):
 | |
|         C.grad_all(with_param)(1, 2)
 | |
| 
 | |
| 
 | |
| class WithNoBprop(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super(WithNoBprop, self).__init__()
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return 2 * x + y
 | |
| 
 | |
| 
 | |
| def test_with_no_bprop():
 | |
|     with_no_bprop = WithNoBprop()
 | |
|     assert C.grad_all(with_no_bprop)(1, 2) == (2, 1)
 | |
| 
 | |
| 
 | |
| def test_grad_in_bprop_1():
 | |
|     class GradInBprop_1(nn.Cell):
 | |
|         def __init__(self):
 | |
|             super(GradInBprop_1, self).__init__()
 | |
|             self.relu = P.ReLU()
 | |
| 
 | |
|         def construct(self, x, y):
 | |
|             return self.relu(x)
 | |
| 
 | |
|     class GradInBprop_2(nn.Cell):
 | |
|         def __init__(self):
 | |
|             super(GradInBprop_2, self).__init__()
 | |
|             self.f = GradInBprop_1()
 | |
| 
 | |
|         def construct(self, x, y):
 | |
|             return self.f(x, y), C.grad_all(self.f)(x, y)
 | |
| 
 | |
|         def bprop(self, x, y, out, dout):
 | |
|             grads = C.grad_all(self.f)(x, y)
 | |
|             return out[1][0], grads[1]
 | |
| 
 | |
|     class GradInBprop_3(nn.Cell):
 | |
|         def __init__(self):
 | |
|             super(GradInBprop_3, self).__init__()
 | |
|             self.f = GradInBprop_2()
 | |
| 
 | |
|         def construct(self, x, y):
 | |
|             return self.f(x, y)
 | |
| 
 | |
|     grad_in_bprop = GradInBprop_3()
 | |
|     grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
 | |
|                                       Tensor(np.ones([2, 2]).astype(np.float32)))
 | |
|     assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all()
 | |
|     assert (grads[1].asnumpy() == np.zeros([2, 2]).astype(np.float32)).all()
 | |
| 
 | |
| 
 | |
| def test_grad_in_bprop_2():
 | |
|     class GradInBprop_1(nn.Cell):
 | |
|         def __init__(self):
 | |
|             super(GradInBprop_1, self).__init__()
 | |
|             self.relu = P.ReLU()
 | |
| 
 | |
|         def construct(self, x, y):
 | |
|             return self.relu(x)
 | |
| 
 | |
|         def bprop(self, x, y, out, dout):
 | |
|             return x * y, y + x
 | |
| 
 | |
|     class GradInBprop_2(nn.Cell):
 | |
|         def __init__(self):
 | |
|             super(GradInBprop_2, self).__init__()
 | |
|             self.f = GradInBprop_1()
 | |
| 
 | |
|         def construct(self, x, y):
 | |
|             return self.f(x, y), C.grad_all(self.f)(x, y)
 | |
| 
 | |
|         def bprop(self, x, y, out, dout):
 | |
|             grads = C.grad_all(self.f)(x, y)
 | |
|             return out[1][0], grads[1]
 | |
| 
 | |
|     class GradInBprop_3(nn.Cell):
 | |
|         def __init__(self):
 | |
|             super(GradInBprop_3, self).__init__()
 | |
|             self.f = GradInBprop_2()
 | |
| 
 | |
|         def construct(self, x, y):
 | |
|             return self.f(x, y)
 | |
| 
 | |
|     grad_in_bprop = GradInBprop_3()
 | |
|     grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
 | |
|                                       Tensor(np.ones([2, 2]).astype(np.float32)))
 | |
|     assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all()
 | |
|     assert (grads[1].asnumpy() == np.array([[2, 2], [2, 2]]).astype(np.float32)).all()
 | |
| 
 | |
| 
 | |
| def test_grad_in_bprop_3():
 | |
|     class GradInBprop_1(nn.Cell):
 | |
|         def __init__(self):
 | |
|             super(GradInBprop_1, self).__init__()
 | |
|             self.relu = P.ReLU()
 | |
| 
 | |
|         def construct(self, x, y):
 | |
|             return self.relu(x)
 | |
| 
 | |
|     class GradInBprop_2(nn.Cell):
 | |
|         def __init__(self):
 | |
|             super(GradInBprop_2, self).__init__()
 | |
|             self.f = GradInBprop_1()
 | |
| 
 | |
|         def construct(self, x, y):
 | |
|             return self.f(x, y), C.grad_all(self.f)(x, y)
 | |
| 
 | |
|         def bprop(self, x, y, out, dout):
 | |
|             grads = C.grad_all(self.f)(x, y)
 | |
|             return out[1][0], grads[1]
 | |
| 
 | |
|     class GradInBprop_3(nn.Cell):
 | |
|         def __init__(self):
 | |
|             super(GradInBprop_3, self).__init__()
 | |
|             self.f = GradInBprop_2()
 | |
| 
 | |
|         def construct(self, x, y):
 | |
|             return self.f(x, y)
 | |
| 
 | |
|         def bprop(self, x, y, out, dout):
 | |
|             return x + y + y + out[0], x + x + y + y + dout[0]
 | |
| 
 | |
|     grad_in_bprop = GradInBprop_3()
 | |
|     grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
 | |
|                                       Tensor(np.ones([2, 2]).astype(np.float32)))
 | |
|     assert (grads[0].asnumpy() == np.array([[4, 4], [4, 4]]).astype(np.float32)).all()
 | |
|     assert (grads[1].asnumpy() == np.array([[5, 5], [5, 5]]).astype(np.float32)).all()
 | |
| 
 | |
| 
 | |
| class OneInputBprop(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
|         self.op = P.ReLU()
 | |
| 
 | |
|     def construct(self, x):
 | |
|         return self.op(x)
 | |
| 
 | |
|     def bprop(self, x, out, dout):
 | |
|         return (5 * x,)
 | |
| 
 | |
| 
 | |
| def test_grad_one_input_bprop():
 | |
|     net = OneInputBprop()
 | |
|     input1 = Tensor(np.ones([2, 2]).astype(np.float32))
 | |
|     grad = C.grad_all(net)(input1)
 | |
|     assert (grad[0].asnumpy() == np.array([5, 5]).astype(np.float32)).all()
 | |
| 
 | |
| 
 | |
| class TwoInput(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return x * y
 | |
| 
 | |
| 
 | |
| class InlineBpropTwoInput(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
|         self.f = TwoInput()
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return self.f(x, y), C.grad_all(self.f)(x, y)
 | |
| 
 | |
|     def bprop(self, x, y, out, dout):
 | |
|         grads = C.grad_all(self.f)(x, y)
 | |
|         return grads[0] * 2, grads[1] * 2
 | |
| 
 | |
| 
 | |
| def test_grad_inline_bprop_two_input():
 | |
|     net = InlineBpropTwoInput()
 | |
|     input1 = Tensor(np.ones([2, 2]).astype(np.float32))
 | |
|     input2 = Tensor(np.ones([2, 2]).astype(np.float32))
 | |
|     grads = C.grad_all(net)(input1, input2)
 | |
|     assert (grads[0].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
 | |
|     assert (grads[1].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
 | |
|     assert len(grads) == 2
 | |
| 
 | |
| 
 | |
| class TwoInputBprop(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
|         self.op = P.Mul()
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return self.op(x, y)
 | |
| 
 | |
|     def bprop(self, x, y, out, dout):
 | |
|         return 5 * x, 8 * y
 | |
| 
 | |
| 
 | |
| class TwoInputWithParameter(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
|         self.op = P.Mul()
 | |
|         self.inputdata = Parameter(initializer(1, (2, 2), mstype.float32), name="global_step")
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         x = self.inputdata + x
 | |
|         return self.op(x, y)
 | |
| 
 | |
| 
 | |
| class TwoInputWithOnlyInitParameterBprop(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
|         self.op = P.Mul()
 | |
|         self.inputdata = Parameter(initializer(1, (2, 2), mstype.float32), name="global_step")
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return self.op(x, y)
 | |
| 
 | |
|     def bprop(self, x, y, out, dout):
 | |
|         return 5 * x, 8 * y
 | |
| 
 | |
| 
 | |
| class InlineMutilTwoInputParameterCell(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
|         self.f1 = TwoInputBprop()
 | |
|         self.f2 = TwoInput()
 | |
|         self.f3 = TwoInputWithParameter()
 | |
|         self.f4 = TwoInputWithOnlyInitParameterBprop()
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         output = self.f1(x, y) + self.f2(x, y) + self.f3(x, y) + self.f4(x, y)
 | |
|         return output
 | |
| 
 | |
| 
 | |
| def test_grad_inline_bprop_multi_input():
 | |
|     net = InlineMutilTwoInputParameterCell()
 | |
|     input1 = Tensor(np.ones([2, 2]).astype(np.float32))
 | |
|     input2 = Tensor(np.ones([2, 2]).astype(np.float32))
 | |
|     net.init_parameters_data()
 | |
|     grads = C.grad_all(net)(input1, input2)
 | |
|     assert (grads[0].asnumpy() == np.array([[12, 12], [12, 12]]).astype(np.float32)).all()
 | |
|     assert (grads[1].asnumpy() == np.array([[19, 19], [19, 19]]).astype(np.float32)).all()
 | |
|     assert len(grads) == 2
 | |
| 
 | |
| 
 | |
| class MulAddWithParam(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super(MulAddWithParam, self).__init__()
 | |
|         self.mul_add = MulAdd()
 | |
|         self.param = Parameter(Tensor(np.array([[3, 2]], np.float32)), 'param')
 | |
| 
 | |
|     def construct(self, x):
 | |
|         return self.mul_add(self.param, x)
 | |
| 
 | |
| 
 | |
| def test_refkey_bprop():
 | |
|     net = MulAddWithParam()
 | |
|     input_data = Tensor(np.array([2, 2], np.float32))
 | |
|     grads = bprop(net, input_data,
 | |
|                   grads_wrt_outputs=(Tensor(np.ones([1, 2]).astype(np.float32))),
 | |
|                   wrt=['params', 'inputs'],
 | |
|                   params=net.trainable_params())
 | |
|     assert (grads[0][0].asnumpy() == np.array([4, 4]).astype(np.float32)).all()
 | |
|     assert (grads[1][0].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
 | |
| 
 | |
| 
 | |
| class MulAddWithWrongOutputNum(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super(MulAddWithWrongOutputNum, self).__init__()
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return 2 * x + y
 | |
| 
 | |
|     def bprop(self, x, y, out, dout):
 | |
|         return (2 * dout,)
 | |
| 
 | |
| 
 | |
| def test_grad_mul_add_with_wrong_output_num():
 | |
|     context.set_context(check_bprop=True)
 | |
|     mul_add = MulAddWithWrongOutputNum()
 | |
|     with pytest.raises(TypeError):
 | |
|         C.grad_all(mul_add)(1, 2)
 | |
| 
 | |
| 
 | |
| class MulAddWithWrongOutputType(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super(MulAddWithWrongOutputType, self).__init__()
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return 2 * x + y
 | |
| 
 | |
|     def bprop(self, x, y, out, dout):
 | |
|         return 2 * dout, 2
 | |
| 
 | |
| 
 | |
| def test_grad_mul_add_with_wrong_output_type():
 | |
|     context.set_context(check_bprop=True)
 | |
|     mul_add = MulAddWithWrongOutputType()
 | |
|     with pytest.raises(TypeError):
 | |
|         C.grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
 | |
| 
 | |
| 
 | |
| class MulAddWithWrongOutputShape(nn.Cell):
 | |
|     def __init__(self):
 | |
|         super(MulAddWithWrongOutputShape, self).__init__()
 | |
|         self.ones = Tensor(np.ones([2,]))
 | |
| 
 | |
|     def construct(self, x, y):
 | |
|         return 2 * x + y
 | |
| 
 | |
|     def bprop(self, x, y, out, dout):
 | |
|         return 2, self.ones
 | |
| 
 | |
| 
 | |
| def test_grad_mul_add_with_wrong_output_shape():
 | |
|     context.set_context(check_bprop=True)
 | |
|     mul_add = MulAddWithWrongOutputShape()
 | |
|     with pytest.raises(TypeError):
 | |
|         C.grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
 |