You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
65 lines
2.7 KiB
65 lines
2.7 KiB
/**
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "kernel/cpu/transpose_cpu_kernel.h"
|
|
#include "device/cpu/cpu_device_address.h"
|
|
namespace mindspore {
|
|
namespace kernel {
|
|
const size_t kMaxDim = 100;
|
|
void TransposeCPUFwdKernel::InitKernel(const CNodePtr &kernel_node) {
|
|
MS_EXCEPTION_IF_NULL(kernel_node);
|
|
shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
|
axis_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, "perm");
|
|
if (shape_.size() != axis_.size()) {
|
|
MS_LOG(EXCEPTION) << "The size of input shape and transpose axis shape must be equal.";
|
|
}
|
|
}
|
|
bool TransposeCPUFwdKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
|
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
|
const std::vector<kernel::AddressPtr> &outputs) {
|
|
auto input = reinterpret_cast<float *>(inputs[0]->addr);
|
|
auto output = reinterpret_cast<float *>(outputs[0]->addr);
|
|
size_t size = IntToSize(inputs[0]->size / sizeof(float));
|
|
size_t shape_size = IntToSize(shape_.size());
|
|
if (shape_size > kMaxDim) {
|
|
MS_LOG(EXCEPTION) << "Input is " << shape_size << "-D, but transpose supports max " << kMaxDim << "-D inputs.";
|
|
}
|
|
size_t pos_array[kMaxDim];
|
|
size_t size_offset[kMaxDim];
|
|
size_offset[0] = size / shape_[0];
|
|
for (size_t i = 1; i < shape_size; i++) {
|
|
size_offset[i] = size_offset[SizeToInt(i) - 1] / shape_[i];
|
|
}
|
|
for (size_t position = 0; position < size; position += 1) {
|
|
size_t temp_position = position;
|
|
pos_array[0] = temp_position / size_offset[0];
|
|
for (size_t i = 1; i < shape_size; i++) {
|
|
temp_position -= pos_array[SizeToInt(i) - 1] * size_offset[i - 1];
|
|
pos_array[i] = temp_position / size_offset[i];
|
|
}
|
|
size_t new_position = pos_array[axis_[SizeToInt(shape_size) - 1]];
|
|
size_t new_position_size = 1;
|
|
for (int j = shape_size - 2; j >= 0; j--) {
|
|
new_position_size *= shape_[axis_[j + 1]];
|
|
new_position += pos_array[axis_[j]] * new_position_size;
|
|
}
|
|
output[new_position] = input[position];
|
|
}
|
|
return true;
|
|
}
|
|
} // namespace kernel
|
|
} // namespace mindspore
|