You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
62 lines
2.6 KiB
62 lines
2.6 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Generate News Crawl corpus dataset."""
|
|
import argparse
|
|
|
|
from src.utils import Dictionary
|
|
from src.utils.preprocess import create_pre_training_dataset
|
|
|
|
parser = argparse.ArgumentParser(description='Create News Crawl Pre-Training Dataset.')
|
|
parser.add_argument("--src_folder", type=str, default="", required=True,
|
|
help="Raw corpus folder.")
|
|
parser.add_argument("--existed_vocab", type=str, default="", required=True,
|
|
help="Existed vocab path.")
|
|
parser.add_argument("--mask_ratio", type=float, default=0.4, required=True,
|
|
help="Mask ratio.")
|
|
parser.add_argument("--output_folder", type=str, default="", required=True,
|
|
help="Dataset output path.")
|
|
parser.add_argument("--max_len", type=int, default=32, required=False,
|
|
help="Max length of sentences.")
|
|
parser.add_argument("--ngram", type=int, default=3, required=True,
|
|
help="Number of tokens to predict ahead.")
|
|
parser.add_argument("--suffix", type=str, default="", required=False,
|
|
help="Add suffix to output file.")
|
|
parser.add_argument("--processes", type=int, default=2, required=False,
|
|
help="Size of processes pool.")
|
|
|
|
if __name__ == '__main__':
|
|
args, _ = parser.parse_known_args()
|
|
if not (args.src_folder and args.output_folder):
|
|
raise ValueError("Please enter required params.")
|
|
|
|
if not args.existed_vocab:
|
|
raise ValueError("`--existed_vocab` is required.")
|
|
|
|
vocab = Dictionary.load_from_persisted_dict(args.existed_vocab)
|
|
|
|
create_pre_training_dataset(
|
|
folder_path=args.src_folder,
|
|
output_folder_path=args.output_folder,
|
|
vocabulary=vocab,
|
|
prefix="news.20", suffix=args.suffix,
|
|
mask_ratio=args.mask_ratio,
|
|
ngram=args.ngram,
|
|
min_sen_len=10,
|
|
max_sen_len=args.max_len,
|
|
dataset_type="tfrecord",
|
|
cores=args.processes
|
|
)
|
|
print(f" | Vocabulary size: {vocab.size}.")
|