You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_sub_op.py

115 lines
3.9 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.sub = P.Sub()
def construct(self, x, y):
return self.sub(x, y)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_Sub():
np_x0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
np_y0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
np_x1 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
np_y1 = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(np.float32)
np_x2 = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32)
np_y2 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
np_x3 = np.random.uniform(-2, 2, 1).astype(np.float32)
np_y3 = np.random.uniform(-2, 2, 1).astype(np.float32)
np_x4 = np.array(768).astype(np.float32)
np_y4 = np.array(3072.5).astype(np.float32)
x0 = Tensor(np_x0)
y0 = Tensor(np_y0)
x1 = Tensor(np_x1)
y1 = Tensor(np_y1)
x2 = Tensor(np_x2)
y2 = Tensor(np_y2)
x3 = Tensor(np_x3)
y3 = Tensor(np_y3)
x4 = Tensor(np_x4)
y4 = Tensor(np_y4)
expect0 = np.subtract(np_x0, np_y0)
error0 = np.ones(shape=expect0.shape) * 1.0e-5
expect1 = np.subtract(np_x1, np_y1)
error1 = np.ones(shape=expect1.shape) * 1.0e-5
expect2 = np.subtract(np_x2, np_y2)
error2 = np.ones(shape=expect2.shape) * 1.0e-5
expect3 = np.subtract(np_x3, np_y3)
error3 = np.ones(shape=expect3.shape) * 1.0e-5
expect4 = np.subtract(np_x4, np_y4)
error4 = np.ones(shape=expect4.shape) * 1.0e-5
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
sub = Net()
output0 = sub(x0, y0)
output1 = sub(x1, y1)
output2 = sub(x2, y2)
output3 = sub(x3, y3)
output4 = sub(x4, y4)
diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0)
assert output0.shape == expect0.shape
diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1)
assert output1.shape == expect1.shape
diff2 = output2.asnumpy() - expect2
assert np.all(diff2 < error2)
assert output2.shape == expect2.shape
diff3 = output3.asnumpy() - expect3
assert np.all(diff3 < error3)
assert output3.shape == expect3.shape
diff4 = output4.asnumpy() - expect4
assert np.all(diff4 < error4)
assert output4.shape == expect4.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
sub = Net()
output0 = sub(x0, y0)
output1 = sub(x1, y1)
output2 = sub(x2, y2)
output3 = sub(x3, y3)
output4 = sub(x4, y4)
diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0)
assert output0.shape == expect0.shape
diff1 = output1.asnumpy() - expect1
assert np.all(diff1 < error1)
assert output1.shape == expect1.shape
diff2 = output2.asnumpy() - expect2
assert np.all(diff2 < error2)
assert output2.shape == expect2.shape
diff3 = output3.asnumpy() - expect3
assert np.all(diff3 < error3)
assert output3.shape == expect3.shape
diff4 = output4.asnumpy() - expect4
assert np.all(diff4 < error4)
assert output4.shape == expect4.shape