You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
647 lines
21 KiB
647 lines
21 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import os
|
|
import pytest
|
|
import numpy as np
|
|
import mindspore as ms
|
|
import mindspore.ops.operations as P
|
|
from mindspore.nn import Cell
|
|
from mindspore import context, Tensor
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.train.model import Model
|
|
from mindspore.ops.composite import GradOperation
|
|
from mindspore.common import ParameterTuple
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
|
|
class _Grad(Cell):
|
|
def __init__(self, grad, network, wrt_params=False, real_inputs_count=None):
|
|
super().__init__()
|
|
self.network = network
|
|
self.grad = grad
|
|
self.sens_param = self.grad.sens_param
|
|
self.wrt_params = wrt_params
|
|
self.real_inputs_count = real_inputs_count
|
|
if self.wrt_params:
|
|
self.params = ParameterTuple(self.network.trainable_params())
|
|
|
|
def construct(self, *inputs):
|
|
if self.real_inputs_count is None or self.sens_param is False:
|
|
if self.wrt_params:
|
|
return self.grad(self.network, self.params)(*inputs)
|
|
return self.grad(self.network)(*inputs)
|
|
|
|
real_inputs = inputs[:self.real_inputs_count]
|
|
sense_param_inputs = inputs[self.real_inputs_count:]
|
|
if self.wrt_params:
|
|
return self.grad(self.network, self.params)(*real_inputs, sense_param_inputs)
|
|
return self.grad(self.network)(*real_inputs, sense_param_inputs)
|
|
|
|
|
|
class GradOfFirstInput(_Grad):
|
|
"""
|
|
get grad of first input
|
|
"""
|
|
|
|
def __init__(self, network, sens_param=True, real_inputs_count=None):
|
|
super().__init__(grad=GradOperation(sens_param=sens_param),
|
|
network=network, real_inputs_count=real_inputs_count)
|
|
|
|
|
|
class GradOfAllInputs(_Grad):
|
|
'''
|
|
get grads of all inputs
|
|
'''
|
|
|
|
def __init__(self, network, sens_param=True, real_inputs_count=None):
|
|
super().__init__(grad=GradOperation(get_all=True, sens_param=sens_param),
|
|
network=network, real_inputs_count=real_inputs_count)
|
|
|
|
|
|
class GradOfAllInputsAndParams(_Grad):
|
|
'''
|
|
get grads of all inputs and params
|
|
'''
|
|
|
|
def __init__(self, network, sens_param=True, real_inputs_count=None):
|
|
super().__init__(grad=GradOperation(get_all=True, get_by_list=True, sens_param=sens_param),
|
|
network=network, wrt_params=True, real_inputs_count=real_inputs_count)
|
|
|
|
|
|
def _count_unequal_element(data_expected, data_me, rtol, atol):
|
|
assert data_expected.shape == data_me.shape
|
|
total_count = len(data_expected.flatten())
|
|
error = np.abs(data_expected - data_me)
|
|
greater = np.greater(error, atol + np.abs(data_me)*rtol)
|
|
loss_count = np.count_nonzero(greater)
|
|
assert (loss_count/total_count) < rtol, \
|
|
"\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".\
|
|
format(data_expected[greater], data_me[greater], error[greater])
|
|
|
|
|
|
def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
|
|
if np.any(np.isnan(data_expected)):
|
|
assert np.allclose(data_expected, data_me, rtol,
|
|
atol, equal_nan=equal_nan)
|
|
elif not np.allclose(data_expected, data_me, rtol, atol, equal_nan=equal_nan):
|
|
_count_unequal_element(data_expected, data_me, rtol, atol)
|
|
else:
|
|
assert True
|
|
|
|
|
|
class ControlGraphSupportNotEqual(Cell):
|
|
def construct(self, x, y, z, input_data):
|
|
if x != y:
|
|
out = input_data + input_data
|
|
else:
|
|
out = input_data - input_data
|
|
if x == z:
|
|
out2 = input_data * input_data
|
|
else:
|
|
out2 = input_data / input_data
|
|
if x == z:
|
|
out3_f = (lambda a: a+a)
|
|
out3 = out3_f(input_data)
|
|
else:
|
|
out3_f = (lambda a: a+a+a)
|
|
out3 = out3_f(input_data)
|
|
return out, out2, out3
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_ctrl_if_while_graph_support_not_equal_true():
|
|
x = np.array(0).astype(np.float32)
|
|
y = np.array(3).astype(np.float32)
|
|
input_shape = (512, 512, 7, 7)
|
|
input_data = np.random.randn(*input_shape).astype(np.float32)
|
|
net = ControlGraphSupportNotEqual()
|
|
model = Model(net)
|
|
out_me = model.predict(Tensor(x), Tensor(y), Tensor(x), Tensor(input_data))
|
|
out = input_data + input_data
|
|
out2 = input_data * input_data
|
|
out3 = input_data + input_data
|
|
allclose_nparray(out, out_me[0].asnumpy(), 0.0001, 0.0001)
|
|
allclose_nparray(out2, out_me[1].asnumpy(), 0.0001, 0.0001)
|
|
allclose_nparray(out3, out_me[2].asnumpy(), 0.0001, 0.0001)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_ctrl_if_while_graph_support_not_equal_false():
|
|
x = np.array(0).astype(np.float32)
|
|
y = np.array(0).astype(np.float32)
|
|
z = np.array(3).astype(np.float32)
|
|
input_shape = (512, 512, 7, 7)
|
|
input_data = np.random.randn(*input_shape).astype(np.float32)
|
|
net = ControlGraphSupportNotEqual()
|
|
model = Model(net)
|
|
out_me = model.predict(Tensor(x), Tensor(y), Tensor(z), Tensor(input_data))
|
|
out = input_data - input_data
|
|
out2 = input_data / input_data
|
|
out3 = input_data + input_data + input_data
|
|
allclose_nparray(out, out_me[0].asnumpy(), 0.0001, 0.0001)
|
|
allclose_nparray(out2, out_me[1].asnumpy(), 0.0001, 0.0001)
|
|
allclose_nparray(out3, out_me[2].asnumpy(), 0.0001, 0.0001)
|
|
|
|
|
|
class ControlBprop(Cell):
|
|
def construct(self, x, y, z, input_data):
|
|
if x != y:
|
|
out = input_data + input_data
|
|
else:
|
|
out = input_data - input_data
|
|
if x == z:
|
|
out2 = input_data * input_data
|
|
else:
|
|
out2 = input_data / input_data
|
|
if x == z:
|
|
out3_f = (lambda a: a+a)
|
|
out3 = out3_f(input_data)
|
|
else:
|
|
out3_f = (lambda a: a+a+a)
|
|
out3 = out3_f(input_data)
|
|
return out, out2, out3
|
|
|
|
def bprop(self, x, y, z, input_data, out, dout):
|
|
return x*2, y*3, z, input_data*5.1
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_ctrl_if_while_bprop_true():
|
|
x = np.array(0).astype(np.float32)
|
|
y = np.array(3).astype(np.float32)
|
|
input_shape = (512, 512, 7, 7)
|
|
input_data = np.random.randn(*input_shape).astype(np.float32)
|
|
net = ControlBprop()
|
|
grad_net = GradOfAllInputs(net, sens_param=False)
|
|
grad_net.set_train()
|
|
grads = grad_net(Tensor(x), Tensor(y), Tensor(x), Tensor(input_data))
|
|
allclose_nparray(x*2, grads[0].asnumpy(), 0.0000, 0.0000)
|
|
allclose_nparray(y*3, grads[1].asnumpy(), 0.0000, 0.0000)
|
|
allclose_nparray(x, grads[2].asnumpy(), 0.0000, 0.0000)
|
|
allclose_nparray(input_data*5.1, grads[3].asnumpy(), 0.0000, 0.0000)
|
|
|
|
|
|
class TwoInput(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.op = P.Mul()
|
|
|
|
def construct(self, x, y):
|
|
x = self.op(x, y)
|
|
return x
|
|
|
|
|
|
class InlineBpropTwoInput1(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.f = TwoInput()
|
|
self.f.set_grad()
|
|
self.grad = GradOfAllInputs(self.f, sens_param=False)
|
|
|
|
def construct(self, x, y):
|
|
if x > y:
|
|
x = self.f(x, y)
|
|
else:
|
|
x = self.f(x, y)
|
|
return x
|
|
|
|
def bprop(self, x, y, out, dout):
|
|
if x > y:
|
|
grads = self.grad(x, y)
|
|
else:
|
|
grads = self.grad(x, y)
|
|
return grads[0]*2, grads[1]*2
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_ctrl_if_while_bprop_inlinebprop_twoinput():
|
|
net = InlineBpropTwoInput1()
|
|
input1 = Tensor(np.array(2).astype(np.float32))
|
|
input2 = Tensor(np.array(1).astype(np.float32))
|
|
grad_net = GradOfAllInputs(net, sens_param=False)
|
|
grad_net.set_train()
|
|
grads = grad_net(input1, input2)
|
|
allclose_nparray(input1.asnumpy()*2, grads[1].asnumpy(), 0, 0)
|
|
allclose_nparray(input2.asnumpy()*2, grads[0].asnumpy(), 0, 0)
|
|
|
|
|
|
class ControlOneIfOneParaOneAddn(Cell):
|
|
def __init__(self, input_shape):
|
|
super().__init__()
|
|
self.addn = P.AddN()
|
|
self.assign = P.Assign()
|
|
self.inputdata = Parameter(initializer(
|
|
1, input_shape, ms.float32), name="global_step")
|
|
|
|
def construct(self, x, y, input_data):
|
|
if x > y:
|
|
out = self.inputdata
|
|
else:
|
|
out = self.addn([input_data, input_data, input_data])
|
|
if x > y:
|
|
out = self.assign(self.inputdata, input_data)
|
|
return out
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_ctrl_if_para_addn_true():
|
|
x = Tensor(1, ms.float32)
|
|
y = Tensor(0, ms.float32)
|
|
input_shape = (1024, 512, 7, 7)
|
|
input_data = np.random.randn(*input_shape).astype(np.float32)
|
|
net = ControlOneIfOneParaOneAddn(input_shape)
|
|
out = net(x, y, Tensor(input_data))
|
|
allclose_nparray(input_data[0], out.asnumpy()[0], 0.0001, 0.0001)
|
|
|
|
|
|
class AddnCell(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.addn = P.AddN()
|
|
|
|
def construct(self, x):
|
|
x = self.addn((x, x))
|
|
return x
|
|
|
|
|
|
class SideEffectMemoryCellAddnNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.para = Parameter(Tensor([1.0], ms.float32), name="para")
|
|
self.assign = P.Assign()
|
|
self.addn = P.AddN()
|
|
self.addn1 = AddnCell()
|
|
|
|
def construct(self, x):
|
|
x = self.addn1(x)
|
|
self.assign(self.para, x)
|
|
out = self.addn((self.para, x))
|
|
return out
|
|
|
|
def grad_mindspore_impl(self, params, grad_ys):
|
|
grad_net = GradOfAllInputsAndParams(self)
|
|
grad_net.set_train()
|
|
grad_out = grad_net(params, grad_ys)
|
|
return grad_out
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_grad_memory_addn():
|
|
net = SideEffectMemoryCellAddnNet()
|
|
grad_ys = Tensor([18.0], ms.float32)
|
|
inputs = Tensor([9.0], ms.float32)
|
|
net.grad_mindspore_impl(inputs, grad_ys)
|
|
|
|
|
|
class SideEffectIOCellAddnNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.para1 = Parameter(Tensor([1.0], ms.float32), name="para1")
|
|
self.para2 = Parameter(Tensor([3.0], ms.float32), name="para2")
|
|
self.print = P.Print()
|
|
self.addn = AddnCell()
|
|
|
|
def construct(self, x):
|
|
self.print("para1:", self.para1)
|
|
self.print("para2:", self.para2)
|
|
x = self.addn(x)
|
|
return x
|
|
|
|
def grad_mindspore_impl(self, params, grad_ys):
|
|
grad_net = GradOfAllInputsAndParams(self)
|
|
grad_net.set_train()
|
|
grad_out = grad_net(params, grad_ys)
|
|
return grad_out
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_grad_io_addn():
|
|
net = SideEffectIOCellAddnNet()
|
|
grad_ys = Tensor([18.0], ms.float32)
|
|
inputs = Tensor([9.0], ms.float32)
|
|
net.grad_mindspore_impl(inputs, grad_ys)
|
|
|
|
|
|
class SideEffectReturnParameterNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.para = Parameter(Tensor([1.0], ms.float32), name="para")
|
|
self.assign = P.Assign()
|
|
self.addn = P.AddN()
|
|
self.relu = P.ReLU()
|
|
|
|
def construct(self, inputs):
|
|
p1 = self.assign(self.para, inputs)
|
|
out = self.addn((inputs, inputs, inputs))
|
|
out = self.relu(out)
|
|
return p1
|
|
|
|
def grad_mindspore_impl(self, params, grad_ys):
|
|
grad_net = GradOfAllInputsAndParams(self)
|
|
grad_net.set_train()
|
|
grad_out = grad_net(params, grad_ys)
|
|
return grad_out
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_grad_read_dependency_return_parameter():
|
|
net = SideEffectReturnParameterNet()
|
|
grad_ys = Tensor([18.0], ms.float32)
|
|
inputs = Tensor([9.0], ms.float32)
|
|
net.grad_mindspore_impl(inputs, grad_ys)
|
|
|
|
|
|
class SideEffectAssignAddnReluReturnParNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.parameter1 = Parameter(
|
|
Tensor([1.0], ms.float32), name="parameter1")
|
|
self.assign = P.Assign()
|
|
self.addN = P.AddN()
|
|
self.relu = P.ReLU()
|
|
|
|
def construct(self, inputs):
|
|
p1 = self.assign(self.parameter1, inputs)
|
|
out = self.addN((inputs, inputs, inputs))
|
|
out = self.relu(out)
|
|
return p1
|
|
|
|
def grad_mindspore_impl(self, params, grad_ys):
|
|
grad_net = GradOfAllInputsAndParams(self)
|
|
grad_net.set_train()
|
|
grad_out = grad_net(params, grad_ys)
|
|
return grad_out
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_side_effect_grad_read_dependency_assign_addn_relu_return_parameter():
|
|
net = SideEffectAssignAddnReluReturnParNet()
|
|
grad_ys = Tensor([18.0], ms.float32)
|
|
inputs = Tensor([9.0], ms.float32)
|
|
out1 = net.grad_mindspore_impl(inputs, grad_ys)
|
|
net = SideEffectAssignAddnReluReturnParNet()
|
|
try:
|
|
context.set_context(mode=context.PYNATIVE_MODE)
|
|
out2 = net.grad_mindspore_impl(inputs, grad_ys)
|
|
allclose_nparray(out1[0][0].asnumpy(), out2[0]
|
|
[0].asnumpy(), 0.001, 0.001)
|
|
allclose_nparray(out1[1][0].asnumpy(), out2[1]
|
|
[0].asnumpy(), 0.001, 0.001)
|
|
finally:
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class SideEffectPrintInHighOrdeAddnNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.parameter1 = Parameter(
|
|
Tensor([1.0], ms.float32), name="parameter1")
|
|
self.parameter2 = Parameter(
|
|
Tensor([3.0], ms.float32), name="parameter2")
|
|
self.assign = P.Assign()
|
|
self.addn = P.AddN()
|
|
self.mul = P.Mul()
|
|
self.print = P.Print()
|
|
|
|
def construct(self, x):
|
|
self.high_order_func()
|
|
out = self.addn((self.parameter1, x, self.parameter2))
|
|
return out
|
|
|
|
def high_order_func(self):
|
|
self.print("parameter1: ", self.parameter1)
|
|
self.print("parameter2: ", self.parameter2)
|
|
return True
|
|
|
|
def grad_mindspore_impl(self, params, grad_ys):
|
|
grad_net = GradOfAllInputsAndParams(self)
|
|
grad_net.set_train()
|
|
grad_out = grad_net(params, grad_ys)
|
|
return grad_out
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_side_effect_high_order_print_in_high_order_net():
|
|
print_file = os.getcwd()+"/test_side_effect_high_order_print_in_high_order_net.data"
|
|
context.set_context(print_file_path=print_file)
|
|
net = SideEffectPrintInHighOrdeAddnNet()
|
|
out1 = net(Tensor([9.0], ms.float32))
|
|
net = SideEffectPrintInHighOrdeAddnNet()
|
|
try:
|
|
context.set_context(mode=context.PYNATIVE_MODE)
|
|
out2 = net(Tensor([9.0], ms.float32))
|
|
allclose_nparray(out1.asnumpy(), out2.asnumpy(), 0.001, 0.001)
|
|
finally:
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
class SideEffectControlFlowAssignDependTwoIfNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.parameter1 = Parameter(
|
|
Tensor([3.0], ms.float32), name="parameter1")
|
|
self.assign = P.Assign()
|
|
self.mul = P.Mul()
|
|
self.addn = P.AddN()
|
|
self.depend = P.Depend()
|
|
|
|
def construct(self, x, y):
|
|
self.assign(self.parameter1, x)
|
|
if self.parameter1 > y:
|
|
x = self.mul(x, x)
|
|
p2 = self.assign(self.parameter1, x)
|
|
if self.parameter1 > y:
|
|
x = self.addn((x, self.parameter1))
|
|
p3 = self.assign(self.parameter1, x)
|
|
self.depend(p3, p2)
|
|
return x
|
|
|
|
def grad_mindspore_impl(self, params1, params2, grad_ys):
|
|
grad_net = GradOfAllInputsAndParams(self)
|
|
grad_net.set_train()
|
|
grad_out = grad_net(params1, params2, grad_ys)
|
|
return grad_out
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_side_effect_grad_control_flow_assign_depend_of_two_if():
|
|
net = SideEffectControlFlowAssignDependTwoIfNet()
|
|
grad_ys = Tensor([18.0], ms.float32)
|
|
inputs1 = Tensor([9.0], ms.float32)
|
|
inputs2 = Tensor([6.0], ms.float32)
|
|
net.grad_mindspore_impl(inputs1, inputs2, grad_ys)
|
|
|
|
|
|
class SideEffectTwoAddnSwitchNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.addN = P.AddN()
|
|
|
|
def construct(self, x):
|
|
y = x
|
|
x = self.addN((x, x, x))
|
|
y = self.addN((y, y))
|
|
if x > y:
|
|
return x
|
|
return y
|
|
|
|
def grad_mindspore_impl(self, params, grad_ys):
|
|
grad_net = GradOfAllInputsAndParams(self)
|
|
grad_net.set_train()
|
|
grad_out = grad_net(params, grad_ys)
|
|
return grad_out
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_side_effect_grad_two_addn_switch():
|
|
net = SideEffectTwoAddnSwitchNet()
|
|
grad_ys = Tensor([18.0], ms.float32)
|
|
inputs = Tensor([9.0], ms.float32)
|
|
out1 = net.grad_mindspore_impl(inputs, grad_ys)
|
|
net = SideEffectTwoAddnSwitchNet()
|
|
context.set_context(mode=context.PYNATIVE_MODE)
|
|
out2 = net.grad_mindspore_impl(inputs, grad_ys)
|
|
allclose_nparray(out1[0][0].asnumpy(), out2[0][0].asnumpy(), 0.001, 0.001)
|
|
|
|
|
|
class SideEffectGradIfNet(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.relu = P.ReLU()
|
|
a = np.full((1,), 5, dtype=np.float32)
|
|
self.a = Parameter(Tensor(a), name="a")
|
|
b = np.full((1,), 4, dtype=np.float32)
|
|
self.b = Parameter(Tensor(b), name="b")
|
|
|
|
def construct(self, x):
|
|
if self.a > self.b:
|
|
x = self.relu(x)
|
|
out = x
|
|
else:
|
|
out = x + 2
|
|
return out
|
|
|
|
def grad_mindspore_impl(self, params, grad_ys):
|
|
grad_net = GradOfFirstInput(self)
|
|
grad_net.set_train()
|
|
grad_out = grad_net(params, grad_ys)
|
|
return grad_out
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_side_effect_grad_if():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
net = SideEffectGradIfNet()
|
|
grad_ys = Tensor([18.0], ms.float32)
|
|
inputs = Tensor([9.0], ms.float32)
|
|
out1 = net.grad_mindspore_impl(inputs, grad_ys)
|
|
net = SideEffectGradIfNet()
|
|
context.set_context(mode=context.PYNATIVE_MODE)
|
|
out2 = net.grad_mindspore_impl(inputs, grad_ys)
|
|
allclose_nparray(out1.asnumpy(), out2.asnumpy(), 0.001, 0.001)
|
|
|
|
|
|
class OneInputBprop(Cell):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.op = P.ReLU()
|
|
|
|
def construct(self, x):
|
|
return self.op(x)
|
|
|
|
def bprop(self, x, out, dout):
|
|
return (5 * x,)
|
|
|
|
|
|
class HighGrad(Cell):
|
|
def __init__(self, network, grad_list, sens_param=False, real_inputs_count=None):
|
|
super().__init__()
|
|
self.grads = [network]
|
|
for i in range(len(grad_list)-1):
|
|
_grad = grad_list[i](self.grads[i], sens_param=False)
|
|
self.grads.append(_grad)
|
|
self.final_grad = grad_list[-1](self.grads[-1],
|
|
sens_param=sens_param, real_inputs_count=real_inputs_count)
|
|
|
|
def construct(self, *inputs):
|
|
return self.final_grad(*inputs)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_highgrad_one_input_sec_grad():
|
|
net = OneInputBprop()
|
|
x = Tensor(np.array([2, 2]).astype(np.float32))
|
|
grad_net = HighGrad(net, [GradOfFirstInput, GradOfFirstInput])
|
|
dxdx = grad_net(x)
|
|
assert (dxdx.asnumpy() == np.array([5, 5]).astype(np.float32)).all()
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_highgrad_one_input_third_grad():
|
|
net = OneInputBprop()
|
|
x = Tensor(np.array([2, 2]).astype(np.float32))
|
|
grad_net = HighGrad(
|
|
net, [GradOfFirstInput, GradOfFirstInput, GradOfFirstInput])
|
|
third_grad = grad_net(x)
|
|
assert (third_grad.asnumpy() == np.array([0, 0]).astype(np.float32)).all()
|