You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_avgpool_grad_op.py

52 lines
1.7 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops.composite import GradOperation
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = GradOperation(get_all=True, sens_param=True)
self.network = network
@ms_function
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_net():
x = np.arange(1 * 1 * 6 * 6).reshape((1, 1, 6, 6)).astype(np.float32)
net = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='valid')
out = net(Tensor(x))
out_shape = out.asnumpy().shape
sens = np.arange(int(np.prod(out_shape))).reshape(out_shape).astype(np.float32)
backword_net = Grad(net)
output = backword_net(Tensor(x), Tensor(sens))
print(len(output))
print(output[0].asnumpy())