You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_isfinite_op.py

101 lines
3.0 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.ops = P.IsFinite()
def construct(self, x):
return self.ops(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_net():
x0 = Tensor(np.array([np.log(-1), 0.4, np.log(0)]).astype(np.float16))
x1 = Tensor(np.array([np.log(-1), 0.4, np.log(0)]).astype(np.float32))
x2 = Tensor(np.array([np.log(-1), 0.4, np.log(0)]).astype(np.float64))
x3 = Tensor(np.array([4, 1, -5]).astype(np.int8))
x4 = Tensor(np.array([4, 1, -5]).astype(np.int16))
x5 = Tensor(np.array([4, 1, -5]).astype(np.int32))
x6 = Tensor(np.array([4, 1, -5]).astype(np.int64))
x7 = Tensor(np.array([4, 1, -5]).astype(np.uint8))
x8 = Tensor(np.array([4, 1, -5]).astype(np.uint16))
x9 = Tensor(np.array([4, 1, -5]).astype(np.uint32))
x10 = Tensor(np.array([4, 1, -5]).astype(np.uint64))
x11 = Tensor(np.array([False, True, False]).astype(np.bool_))
net = Net()
out = net(x0).asnumpy()
expect = [False, True, False]
assert np.all(out == expect)
out = net(x1).asnumpy()
expect = [False, True, False]
assert np.all(out == expect)
out = net(x2).asnumpy()
expect = [False, True, False]
assert np.all(out == expect)
out = net(x3).asnumpy()
expect = [True, True, True]
assert np.all(out == expect)
out = net(x4).asnumpy()
expect = [True, True, True]
assert np.all(out == expect)
out = net(x5).asnumpy()
expect = [True, True, True]
assert np.all(out == expect)
out = net(x6).asnumpy()
expect = [True, True, True]
assert np.all(out == expect)
out = net(x7).asnumpy()
expect = [True, True, True]
assert np.all(out == expect)
out = net(x8).asnumpy()
expect = [True, True, True]
assert np.all(out == expect)
out = net(x9).asnumpy()
expect = [True, True, True]
assert np.all(out == expect)
out = net(x10).asnumpy()
expect = [True, True, True]
assert np.all(out == expect)
out = net(x11).asnumpy()
expect = [True, True, True]
assert np.all(out == expect)