You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
53 lines
1.7 KiB
53 lines
1.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing UnicodeCharTokenizer op in DE
|
|
"""
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
import mindspore.dataset.text as nlp
|
|
|
|
DATA_FILE = "../data/dataset/testTokenizerData/1.txt"
|
|
|
|
|
|
def split_by_unicode_char(input_strs):
|
|
"""
|
|
Split utf-8 strings to unicode characters
|
|
"""
|
|
out = []
|
|
for s in input_strs:
|
|
out.append([c for c in s])
|
|
return out
|
|
|
|
|
|
def test_unicode_char_tokenizer():
|
|
"""
|
|
Test UnicodeCharTokenizer
|
|
"""
|
|
input_strs = ("Welcome to Beijing!", "北京欢迎您!", "我喜欢English!", " ")
|
|
dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
tokenizer = nlp.UnicodeCharTokenizer()
|
|
dataset = dataset.map(operations=tokenizer)
|
|
tokens = []
|
|
for i in dataset.create_dict_iterator():
|
|
text = nlp.to_str(i['text']).tolist()
|
|
tokens.append(text)
|
|
logger.info("The out tokens is : {}".format(tokens))
|
|
assert split_by_unicode_char(input_strs) == tokens
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_unicode_char_tokenizer()
|