You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.7 KiB
78 lines
2.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import mindspore.context as context
|
|
import functools
|
|
import numpy as np
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import dtype as mstype
|
|
from mindspore.ops import operations as P
|
|
from mindspore import context
|
|
from ..ut_filter import non_graph_engine
|
|
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
|
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
|
|
|
|
|
class TupleGraphNet(nn.Cell):
|
|
def __init__(self):
|
|
super(TupleGraphNet, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, 1, 3, pad_mode='same')
|
|
self.conv2 = nn.Conv2d(3, 1, 7, pad_mode='same')
|
|
self.conv3 = nn.Conv2d(3, 3, 3, pad_mode='same')
|
|
self.layers = (self.conv1, self.conv2, self.conv3)
|
|
|
|
def construct(self, x):
|
|
return self.layers[0](x)
|
|
|
|
|
|
class NestTupleGraphNet(nn.Cell):
|
|
def __init__(self):
|
|
super(NestTupleGraphNet, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, 1, 3, pad_mode='same')
|
|
self.conv2 = nn.Conv2d(3, 1, 7, pad_mode='same')
|
|
self.conv3 = nn.Conv2d(3, 3, 3, pad_mode='same')
|
|
self.layers = ((self.conv1, self.conv2),
|
|
(self.conv2, self.conv1, self.conv3))
|
|
|
|
def construct(self, x):
|
|
return self.layers[0][1](x)
|
|
|
|
|
|
test_case_ops = [
|
|
('TupleGraph', {
|
|
'block': TupleGraphNet(),
|
|
'desc_inputs': [Tensor(np.ones((3, 3, 24, 24)), mstype.float32)]}),
|
|
('NestTupleGraph', {
|
|
'block': NestTupleGraphNet(),
|
|
'desc_inputs': [Tensor(np.ones((3, 3, 24, 24)), mstype.float32)]}),
|
|
]
|
|
|
|
test_case_lists = [test_case_ops]
|
|
test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
|
|
|
|
|
# use -k to select certain testcast
|
|
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
|
|
|
|
|
|
@non_graph_engine
|
|
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
|
def test_exec():
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
return test_exec_case
|