You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_random_sharpness.py

123 lines
4.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomSharpness op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list, diff_mse, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = "../data/dataset/testImageNetData/train/"
GENERATE_GOLDEN = False
def test_random_sharpness(degrees=(0.1, 1.9), plot=False):
"""
Test RandomSharpness
"""
logger.info("Test RandomSharpness")
# Original Images
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.ToTensor()])
ds_original = data.map(input_columns="image",
operations=transforms_original())
ds_original = ds_original.batch(512)
for idx, (image, _) in enumerate(ds_original):
if idx == 0:
images_original = np.transpose(image, (0, 2, 3, 1))
else:
images_original = np.append(images_original,
np.transpose(image, (0, 2, 3, 1)),
axis=0)
# Random Sharpness Adjusted Images
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_random_sharpness = F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.RandomSharpness(degrees=degrees),
F.ToTensor()])
ds_random_sharpness = data.map(input_columns="image",
operations=transforms_random_sharpness())
ds_random_sharpness = ds_random_sharpness.batch(512)
for idx, (image, _) in enumerate(ds_random_sharpness):
if idx == 0:
images_random_sharpness = np.transpose(image, (0, 2, 3, 1))
else:
images_random_sharpness = np.append(images_random_sharpness,
np.transpose(image, (0, 2, 3, 1)),
axis=0)
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
visualize_list(images_original, images_random_sharpness)
def test_random_sharpness_md5():
"""
Test RandomSharpness with md5 comparison
"""
logger.info("Test RandomSharpness with md5 comparison")
original_seed = config_get_set_seed(5)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# define map operations
transforms = [
F.Decode(),
F.RandomSharpness((0.1, 1.9)),
F.ToTensor()
]
transform = F.ComposeOp(transforms)
# Generate dataset
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
data = data.map(input_columns=["image"], operations=transform())
# check results with md5 comparison
filename = "random_sharpness_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
if __name__ == "__main__":
test_random_sharpness()
test_random_sharpness(plot=True)
test_random_sharpness(degrees=(0.5, 1.5), plot=True)
test_random_sharpness_md5()