You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
2.7 KiB
69 lines
2.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""evaluate_imagenet"""
|
|
import argparse
|
|
import os
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import context
|
|
from mindspore.train.model import Model
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
from src.config import config_gpu, config_ascend, config_cpu
|
|
from src.dataset import create_dataset_imagenet, create_dataset_cifar10
|
|
from src.inception_v3 import InceptionV3
|
|
from src.loss import CrossEntropy_Val
|
|
|
|
CFG_DICT = {
|
|
"Ascend": config_ascend,
|
|
"GPU": config_gpu,
|
|
"CPU": config_cpu,
|
|
}
|
|
|
|
DS_DICT = {
|
|
"imagenet": create_dataset_imagenet,
|
|
"cifar10": create_dataset_cifar10,
|
|
}
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='image classification evaluation')
|
|
parser.add_argument('--checkpoint', type=str, default='', help='checkpoint of inception-v3 (Default: None)')
|
|
parser.add_argument('--dataset_path', type=str, default='', help='Dataset path')
|
|
parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU', 'CPU'), help='run platform')
|
|
args_opt = parser.parse_args()
|
|
|
|
if args_opt.platform == 'Ascend':
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(device_id=device_id)
|
|
|
|
cfg = CFG_DICT[args_opt.platform]
|
|
create_dataset = DS_DICT[cfg.ds_type]
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform)
|
|
net = InceptionV3(num_classes=cfg.num_classes, is_training=False)
|
|
ckpt = load_checkpoint(args_opt.checkpoint)
|
|
load_param_into_net(net, ckpt)
|
|
net.set_train(False)
|
|
cfg.rank = 0
|
|
cfg.group_size = 1
|
|
dataset = create_dataset(args_opt.dataset_path, False, cfg)
|
|
loss = CrossEntropy_Val(smooth_factor=0.1, num_classes=cfg.num_classes)
|
|
eval_metrics = {'Loss': nn.Loss(),
|
|
'Top1-Acc': nn.Top1CategoricalAccuracy(),
|
|
'Top5-Acc': nn.Top5CategoricalAccuracy()}
|
|
model = Model(net, loss, optimizer=None, metrics=eval_metrics)
|
|
metrics = model.eval(dataset, dataset_sink_mode=cfg.ds_sink_mode)
|
|
print("metric: ", metrics)
|