You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/xception
caojiewen da60f433f1
removed the useless link of apply form
4 years ago
..
scripts support xception lr slice and fix usability problems 4 years ago
src Change TensorAdd to Add, from r1.1 to master 4 years ago
README.md removed the useless link of apply form 4 years ago
eval.py xception 4 years ago
export.py fix GPU device_id bug 4 years ago
train.py support xception lr slice and fix usability problems 4 years ago

README.md

Contents

Xception Description

Xception by Google is extreme version of Inception. With a modified depthwise separable convolution, it is even better than Inception-v3. This paper was published in 2017.

Paper Franois Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) IEEE, 2017.

Model architecture

The overall network architecture of Xception is show below:

Link

Dataset

Dataset used can refer to paper.

  • Dataset size: 125G, 1250k colorful images in 1000 classes
    • Train: 120G, 1200k images
    • Test: 5G, 50k images
  • Data format: RGB images.
    • Note: Data will be processed in src/dataset.py

Features

Mixed Precision(Ascend)

The mixed precision training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.

For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.

Environment Requirements

Script description

Script and sample code

.
└─Xception
  ├─README.md
  ├─scripts
    ├─run_standalone_train.sh         # launch standalone training with ascend platform(1p)
    ├─run_distribute_train.sh         # launch distributed training with ascend platform(8p)
    └─run_eval.sh                     # launch evaluating with ascend platform
  ├─src
    ├─config.py                       # parameter configuration
    ├─dataset.py                      # data preprocessing
    ├─Xception.py                     # network definition
    ├─loss.py                         # Customized CrossEntropy loss function
    └─lr_generator.py                 # learning rate generator
  ├─train.py                          # train net
  ├─export.py                         # export net
  └─eval.py                           # eval net

Script Parameters

Major parameters in train.py and config.py are:
'num_classes': 1000                # dataset class numbers
'batch_size': 128                  # input batchsize
'loss_scale': 1024                 # loss scale
'momentum': 0.9                    # momentum
'weight_decay': 1e-4               # weight decay
'epoch_size': 250                  # total epoch numbers
'save_checkpoint': True            # save checkpoint
'save_checkpoint_epochs': 1        # save checkpoint epochs
'keep_checkpoint_max': 5           # max numbers to keep checkpoints
'save_checkpoint_path': "./"       # save checkpoint path
'warmup_epochs': 1                 # warmup epoch numbers
'lr_decay_mode': "liner"           # lr decay mode
'use_label_smooth': True           # use label smooth
'finish_epoch': 0                  # finished epochs numbers
'label_smooth_factor': 0.1         # label smoothing factor
'lr_init': 0.00004                 # initiate learning rate
'lr_max': 0.4                      # max bound of learning rate
'lr_end': 0.00004                  # min bound of learning rate

Training process

Usage

You can start training using python or shell scripts. The usage of shell scripts as follows:

  • Ascend:
# distribute training example(8p)
sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
# standalone training
sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH

Notes: RANK_TABLE_FILE can refer to Link, and the device_ip can be got as Link.

Launch

# training example
  python:
      Ascend:
      python train.py --device_target Ascend --dataset_path /dataset/train

  shell:
      Ascend:
      # distribute training example(8p)
      sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
      # standalone training
      sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH

Result

Training result will be stored in the example path. Checkpoints will be stored at . /ckpt_0 by default, and training log will be redirected to log.txt like following.

epoch: 1 step: 1251, loss is 4.8427444
epoch time: 701242.350 ms, per step time: 560.545 ms
epoch: 2 step: 1251, loss is 4.0637593
epoch time: 598591.422 ms, per step time: 478.490 ms

Eval process

Usage

You can start training using python or shell scripts. The usage of shell scripts as follows:

sh scripts/run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT

Launch

# eval example
  python:
      Ascend: python eval.py --device_target Ascend --checkpoint_path PATH_CHECKPOINT --dataset_path DATA_DIR

  shell:
      Ascend: sh scripts/run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT

checkpoint can be produced in training process.

Result

Evaluation result will be stored in the example path, you can find result like the following in eval.log.

result: {'Loss': 1.7797744848789312, 'Top_1_Acc': 0.7985777243589743, 'Top_5_Acc': 0.9485777243589744}

Model description

Performance

Training Performance

Parameters Ascend
Model Version Xception
Resource HUAWEI CLOUD Modelarts
uploaded Date 12/10/2020
MindSpore Version 1.1.0
Dataset 1200k images
Batch_size 128
Training Parameters src/config.py
Optimizer Momentum
Loss Function CrossEntropySmooth
Loss 1.78
Accuracy (8p) Top1[79.8%] Top5[94.8%]
Per step time (8p) 479 ms/step
Total time (8p) 42h
Params (M) 180M
Scripts Xception script

Inference Performance

Parameters Ascend
Model Version Xception
Resource HUAWEI CLOUD Modelarts
Uploaded Date 12/10/2020
MindSpore Version 1.1.0
Dataset 50k images
Batch_size 128
Accuracy Top1[79.8%] Top5[94.8%]
Total time 3mins

Description of Random Situation

In dataset.py, we set the seed inside create_dataset function. We also use random seed in train.py.

ModelZoo Homepage

Please check the official homepage.