You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/common/bboxop_common.cc

234 lines
9.2 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bboxop_common.h"
#include <memory>
#include <string>
#include <vector>
#include <iostream>
#include <stdio.h>
#include "./tinyxml2.h"
#include "opencv2/opencv.hpp"
#include "utils/ms_utils.h"
#include "minddata/dataset/core/cv_tensor.h"
#include "minddata/dataset/util/path.h"
#include "minddata/dataset/core/constants.h"
#include "utils/log_adapter.h"
using namespace mindspore::dataset;
using namespace UT::CVOP::BBOXOP;
using tinyxml2::XMLDocument;
using tinyxml2::XMLElement;
using tinyxml2::XMLError;
const char kAnnotationsFolder[] = "/Annotations/";
const char kImagesFolder[] = "/JPEGImages/";
const char kExpectedName[] = "apple_expect_";
const char kActualName[] = "Actual";
const char kAnnotExt[] = ".xml";
const char kImageExt[] = ".jpg";
BBoxOpCommon::BBoxOpCommon() {}
BBoxOpCommon::~BBoxOpCommon() {}
void BBoxOpCommon::SetUp() {
MS_LOG(INFO) << "starting test.";
image_folder_build_ = "data/dataset/imagefolder/";
image_folder_src_ = "../../../../../tests/ut/data/dataset/imagefolder/";
std::string dir_path = "data/dataset/testVOC2012_2";
GetInputImagesAndAnnotations(dir_path);
}
void BBoxOpCommon::GetInputImagesAndAnnotations(const std::string &dir, std::size_t num_of_samples) {
std::string images_path = dir + std::string(kImagesFolder);
std::string annots_path = dir + std::string(kAnnotationsFolder);
Path dir_path(images_path);
std::shared_ptr<Path::DirIterator> image_dir_itr = Path::DirIterator::OpenDirectory(&dir_path);
std::vector<std::string> paths_to_fetch;
if (!dir_path.Exists()) {
MS_LOG(ERROR) << "Images folder was not found : " + images_path;
EXPECT_TRUE(dir_path.Exists());
}
// get image file paths
while (image_dir_itr->hasNext()) {
Path image_path = image_dir_itr->next();
if (image_path.Extension() == std::string(kImageExt)) {
paths_to_fetch.push_back(image_path.toString());
}
}
// sort fetched files
std::sort(paths_to_fetch.begin(), paths_to_fetch.end());
std::size_t files_fetched = 0;
for (const auto &image_file : paths_to_fetch) {
std::string image_ext = std::string(kImageExt);
std::string annot_file = image_file;
std::size_t pos = 0;
// first replace the Image dir with the Annotation dir.
if ((pos = image_file.find(std::string(kImagesFolder), 0)) != std::string::npos) {
annot_file.replace(pos, std::string(kImagesFolder).length(), std::string(kAnnotationsFolder));
}
// then replace the extensions. the image extension to annotation extension
if ((pos = annot_file.find(image_ext, 0)) != std::string::npos) {
annot_file.replace(pos, std::string(kAnnotExt).length(), std::string(kAnnotExt));
}
std::shared_ptr<Tensor> annotation_tensor;
// load annotations and log failure
if (!LoadAnnotationFile(annot_file, &annotation_tensor)) {
MS_LOG(ERROR) << "Loading Annotations failed in GetInputImagesAndAnnotations";
EXPECT_EQ(0, 1);
}
// load image
GetInputImage(image_file);
// add image and annotation to the tensor table
TensorRow row_data({std::move(input_tensor_), std::move(annotation_tensor)});
images_and_annotations_.push_back(row_data);
files_fetched++;
if (files_fetched == num_of_samples) {
break;
}
}
}
void BBoxOpCommon::SaveImagesWithAnnotations(BBoxOpCommon::FileType type, const std::string &op_name,
const TensorTable &table) {
int i = 0;
for (auto &row : table) {
std::shared_ptr<Tensor> row_to_save;
Status swap_status = SwapRedAndBlue(row[0], &row_to_save);
if (!swap_status.IsOk()) {
MS_LOG(ERROR) << "Swaping red and blue channels failed in SaveImagesWithAnnotations.";
EXPECT_TRUE(swap_status.IsOk());
}
cv::Mat image = std::static_pointer_cast<CVTensor>(row_to_save)->mat();
uint32_t num_of_boxes = row[1]->shape()[0];
bool passing_data_fetch = true;
// For each bounding box draw on the image.
for (uint32_t i = 0; i < num_of_boxes; i++) {
float x = 0.0, y = 0.0, w = 0.0, h = 0.0;
passing_data_fetch &= row[1]->GetItemAt<float>(&x, {i, 0}).IsOk();
passing_data_fetch &= row[1]->GetItemAt<float>(&y, {i, 1}).IsOk();
passing_data_fetch &= row[1]->GetItemAt<float>(&w, {i, 2}).IsOk();
passing_data_fetch &= row[1]->GetItemAt<float>(&h, {i, 3}).IsOk();
if (!passing_data_fetch) {
MS_LOG(ERROR) << "Fetching bbox coordinates failed in SaveImagesWithAnnotations.";
EXPECT_TRUE(passing_data_fetch);
}
cv::Rect bbox(x, y, w, h);
cv::rectangle(image, bbox, cv::Scalar(255, 0, 0), 10, 8, 0);
}
bool im_write_success = false;
// if user wants to save an expected image, use the path to the source folder.
if (type == FileType::kExpected) {
im_write_success = cv::imwrite(
image_folder_src_ + std::string(kExpectedName) + op_name + std::to_string(i) + std::string(kImageExt), image);
} else {
// otherwise if we are saving actual images only for comparison, save in current working dir in build folders.
im_write_success =
cv::imwrite(std::string(kActualName) + op_name + std::to_string(i) + std::string(kImageExt), image);
}
if (!im_write_success) {
MS_LOG(ERROR) << "Image write failed in SaveImagesWithAnnotations.";
EXPECT_TRUE(im_write_success);
}
i += 1;
}
}
void BBoxOpCommon::CompareActualAndExpected(const std::string &op_name) {
size_t num_of_images = images_and_annotations_.size();
for (size_t i = 0; i < num_of_images; i++) {
// load actual and expected images.
std::string actual_path = std::string(kActualName) + op_name + std::to_string(i) + std::string(kImageExt);
std::string expected_path =
image_folder_build_ + std::string(kExpectedName) + op_name + std::to_string(i) + std::string(kImageExt);
cv::Mat expect_img = cv::imread(expected_path, cv::IMREAD_COLOR);
cv::Mat actual_img = cv::imread(actual_path, cv::IMREAD_COLOR);
// after comparison is done remove temporary file
EXPECT_TRUE(remove(actual_path.c_str()) == 0);
// compare using ==operator by Tensor
std::shared_ptr<CVTensor> expect_img_t, actual_img_t;
CVTensor::CreateFromMat(expect_img, &expect_img_t);
CVTensor::CreateFromMat(actual_img, &actual_img_t);
if (actual_img.data) {
EXPECT_EQ(*expect_img_t == *actual_img_t, true);
} else {
MS_LOG(ERROR) << "Not pass verification! Image data is null.";
EXPECT_EQ(0, 1);
}
}
}
bool BBoxOpCommon::LoadAnnotationFile(const std::string &path, std::shared_ptr<Tensor> *target_BBox) {
if (!Path(path).Exists()) {
MS_LOG(ERROR) << "File is not found : " + path;
return false;
}
XMLDocument doc;
XMLError e = doc.LoadFile(mindspore::common::SafeCStr(path));
if (e != XMLError::XML_SUCCESS) {
MS_LOG(ERROR) << "Xml load failed";
return false;
}
XMLElement *root = doc.RootElement();
if (root == nullptr) {
MS_LOG(ERROR) << "Xml load root element error";
return false;
}
XMLElement *object = root->FirstChildElement("object");
if (object == nullptr) {
MS_LOG(ERROR) << "No object find in " + path;
return false;
}
std::vector<float> return_value_list;
dsize_t bbox_count = 0; // keep track of number of bboxes in file
dsize_t bbox_val_count = 4; // creating bboxes of size 4 to test function
// FILE OK TO READ
while (object != nullptr) {
bbox_count += 1;
std::string label_name;
float xmin = 0.0, ymin = 0.0, xmax = 0.0, ymax = 0.0;
XMLElement *bbox_node = object->FirstChildElement("bndbox");
if (bbox_node != nullptr) {
XMLElement *xmin_node = bbox_node->FirstChildElement("xmin");
if (xmin_node != nullptr) xmin = xmin_node->FloatText();
XMLElement *ymin_node = bbox_node->FirstChildElement("ymin");
if (ymin_node != nullptr) ymin = ymin_node->FloatText();
XMLElement *xmax_node = bbox_node->FirstChildElement("xmax");
if (xmax_node != nullptr) xmax = xmax_node->FloatText();
XMLElement *ymax_node = bbox_node->FirstChildElement("ymax");
if (ymax_node != nullptr) ymax = ymax_node->FloatText();
} else {
MS_LOG(ERROR) << "bndbox dismatch in " + path;
return false;
}
if (xmin > 0 && ymin > 0 && xmax > xmin && ymax > ymin) {
for (auto item : {xmin, ymin, xmax - xmin, ymax - ymin}) {
return_value_list.push_back(item);
}
}
object = object->NextSiblingElement("object"); // Read next BBox if exists
}
std::shared_ptr<Tensor> ret_value;
Status s = Tensor::CreateFromVector(return_value_list, TensorShape({bbox_count, bbox_val_count}), &ret_value);
EXPECT_TRUE(s.IsOk());
(*target_BBox) = ret_value; // load bbox from file into return
return true;
}