You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							63 lines
						
					
					
						
							2.5 KiB
						
					
					
				
			
		
		
	
	
							63 lines
						
					
					
						
							2.5 KiB
						
					
					
				| # Copyright 2020 Huawei Technologies Co., Ltd
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| # http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| # ============================================================================
 | |
| """
 | |
| eval.
 | |
| """
 | |
| import os
 | |
| import argparse
 | |
| 
 | |
| from mindspore import context
 | |
| from mindspore.train.model import Model
 | |
| from mindspore.train.serialization import load_checkpoint, load_param_into_net
 | |
| 
 | |
| from src.dataset_imagenet import create_dataset
 | |
| from src.config import config
 | |
| from src.crossentropy import CrossEntropy
 | |
| from src.resnet50 import resnet50
 | |
| 
 | |
| parser = argparse.ArgumentParser(description='Image classification')
 | |
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
 | |
| parser.add_argument('--device_num', type=int, default=1, help='Device num.')
 | |
| parser.add_argument('--do_train', type=bool, default=False, help='Do train or not.')
 | |
| parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.')
 | |
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
 | |
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
 | |
| args_opt = parser.parse_args()
 | |
| 
 | |
| device_id = int(os.getenv('DEVICE_ID'))
 | |
| 
 | |
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
 | |
| context.set_context(device_id=device_id)
 | |
| 
 | |
| if __name__ == '__main__':
 | |
| 
 | |
|     net = resnet50(class_num=config.class_num)
 | |
|     if not config.label_smooth:
 | |
|         config.label_smooth_factor = 0.0
 | |
|     loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
 | |
| 
 | |
|     if args_opt.do_eval:
 | |
|         dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size)
 | |
|         step_size = dataset.get_dataset_size()
 | |
| 
 | |
|         if args_opt.checkpoint_path:
 | |
|             param_dict = load_checkpoint(args_opt.checkpoint_path)
 | |
|             load_param_into_net(net, param_dict)
 | |
|         net.set_train(False)
 | |
| 
 | |
|         model = Model(net, loss_fn=loss, metrics={'acc'})
 | |
|         res = model.eval(dataset)
 | |
|         print("result:", res, "ckpt=", args_opt.checkpoint_path)
 |