You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							133 lines
						
					
					
						
							5.9 KiB
						
					
					
				
			
		
		
	
	
							133 lines
						
					
					
						
							5.9 KiB
						
					
					
				| # Copyright 2020 Huawei Technologies Co., Ltd
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| # http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| # ============================================================================
 | |
| """train_imagenet."""
 | |
| import argparse
 | |
| import os
 | |
| import random
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| from mindspore import Tensor
 | |
| from mindspore import context
 | |
| from mindspore.communication.management import init
 | |
| from mindspore.parallel._auto_parallel_context import auto_parallel_context
 | |
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
 | |
| from mindspore.train.loss_scale_manager import FixedLossScaleManager
 | |
| from mindspore.train.model import ParallelMode
 | |
| from src.model_thor import Model
 | |
| from src.resnet_thor import resnet50
 | |
| from src.thor import THOR
 | |
| from src.config import config
 | |
| from src.crossentropy import CrossEntropy
 | |
| from src.dataset_imagenet import create_dataset
 | |
| 
 | |
| random.seed(1)
 | |
| np.random.seed(1)
 | |
| 
 | |
| parser = argparse.ArgumentParser(description='Image classification')
 | |
| parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
 | |
| parser.add_argument('--device_num', type=int, default=1, help='Device num.')
 | |
| parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
 | |
| parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
 | |
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
 | |
| 
 | |
| args_opt = parser.parse_args()
 | |
| device_id = int(os.getenv('DEVICE_ID'))
 | |
| 
 | |
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
 | |
| 
 | |
| 
 | |
| def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch):
 | |
|     """get_model_lr"""
 | |
|     lr_each_step = []
 | |
|     total_steps = steps_per_epoch * total_epochs
 | |
|     for i in range(total_steps):
 | |
|         epoch = (i + 1) / steps_per_epoch
 | |
|         base = (1.0 - float(epoch) / total_epochs) ** decay
 | |
|         lr_local = lr_init * base
 | |
|         if epoch >= 39:
 | |
|             lr_local = lr_local * 0.5
 | |
|         if epoch >= 40:
 | |
|             lr_local = lr_local * 0.5
 | |
|         lr_each_step.append(lr_local)
 | |
|     current_step = global_step
 | |
|     lr_each_step = np.array(lr_each_step).astype(np.float32)
 | |
|     learning_rate = lr_each_step[current_step:]
 | |
|     return learning_rate
 | |
| 
 | |
| 
 | |
| def get_model_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch):
 | |
|     """get_model_damping"""
 | |
|     damping_each_step = []
 | |
|     total_steps = steps_per_epoch * total_epochs
 | |
|     for step in range(total_steps):
 | |
|         epoch = (step + 1) / steps_per_epoch
 | |
|         damping_here = damping_init * (decay_rate ** (epoch / 10))
 | |
|         damping_each_step.append(damping_here)
 | |
| 
 | |
|     current_step = global_step
 | |
|     damping_each_step = np.array(damping_each_step).astype(np.float32)
 | |
|     damping_now = damping_each_step[current_step:]
 | |
|     return damping_now
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     if not args_opt.do_eval and args_opt.run_distribute:
 | |
|         context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
 | |
|                                           mirror_mean=True, parameter_broadcast=True)
 | |
|         auto_parallel_context().set_all_reduce_fusion_split_indices([107], "hccl_world_groupsum1")
 | |
|         auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum2")
 | |
|         auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3")
 | |
|         auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4")
 | |
|         auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum5")
 | |
| 
 | |
|         init()
 | |
| 
 | |
|     epoch_size = config.epoch_size
 | |
|     damping = get_model_damping(0, 0.03, 0.87, 50, 5004)
 | |
|     net = resnet50(class_num=config.class_num, damping=damping, loss_scale=config.loss_scale,
 | |
|                    frequency=config.frequency)
 | |
| 
 | |
|     if not config.label_smooth:
 | |
|         config.label_smooth_factor = 0.0
 | |
|     loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
 | |
|     if args_opt.do_train:
 | |
|         dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
 | |
|                                  batch_size=config.batch_size)
 | |
|         step_size = dataset.get_dataset_size()
 | |
| 
 | |
|         loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
 | |
|         lr = Tensor(get_model_lr(0, 0.045, 6, 70, 5004))
 | |
|         opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
 | |
|                    filter(lambda x: 'matrix_A' in x.name, net.get_parameters()),
 | |
|                    filter(lambda x: 'matrix_G' in x.name, net.get_parameters()),
 | |
|                    filter(lambda x: 'A_inv_max' in x.name, net.get_parameters()),
 | |
|                    filter(lambda x: 'G_inv_max' in x.name, net.get_parameters()),
 | |
|                    config.weight_decay, config.loss_scale)
 | |
| 
 | |
|         model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', loss_scale_manager=loss_scale,
 | |
|                       keep_batchnorm_fp32=False, metrics={'acc'}, frequency=config.frequency)
 | |
| 
 | |
|         time_cb = TimeMonitor(data_size=step_size)
 | |
|         loss_cb = LossMonitor()
 | |
|         cb = [time_cb, loss_cb]
 | |
|         if config.save_checkpoint:
 | |
|             config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
 | |
|                                          keep_checkpoint_max=config.keep_checkpoint_max)
 | |
|             ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck)
 | |
|             cb += [ckpt_cb]
 | |
| 
 | |
|         model.train(epoch_size, dataset, callbacks=cb)
 |