You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/session/ascend_session.h

176 lines
9.1 KiB

/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_SESSION_ASCEND_SESSION_H
#define MINDSPORE_CCSRC_SESSION_ASCEND_SESSION_H
#include <unordered_map>
#include <string>
#include <memory>
#include <vector>
#include <utility>
#include <stack>
#include <map>
#include <tuple>
#include <set>
#include "session/session_basic.h"
#include "session/kernel_graph.h"
#include "kernel/kernel.h"
#include "session/session_factory.h"
#include "session/ascend_control_parser.h"
namespace mindspore {
namespace session {
enum GraphType : int { COMMON_GRAPH = 0, CONDITION_GRAPH = 1, BRANCH_START = 2, BRANCH_END = 3 };
class AscendSession : public SessionBasic {
public:
AscendSession() { final_graph_id_ = kInvalidGraphId; }
~AscendSession() override = default;
void Init(uint32_t device_id) override {
SessionBasic::Init(device_id);
context_ = std::make_shared<Context>(kAscendDevice, device_id);
}
GraphId CompileGraph(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) override;
GraphId CompileGraph(NotNull<FuncGraphPtr> func_graph) override;
void RunGraph(const GraphId &graph_id, const std::vector<tensor::TensorPtr> &inputs, VectorRef *outputs) override;
void BuildGraph(GraphId) override;
void BuildOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
const std::vector<tensor::TensorPtr> &input_tensors, const std::vector<int> &tensors_mask) override;
py::tuple RunOp(const OpRunInfo &op_run_info, const GraphInfo &graph_info,
const std::vector<tensor::TensorPtr> &input_tensors) override;
// set parameters of final graph
GraphId SetFinalGraphInput(const std::vector<AnfNodePtr> &args) override;
// set output of final graph
void SetFinalGraphOutput(const BaseRef &output) override;
// insert switch and set the relative active ops
void SwitchCompile(GraphId cond_g, GraphId true_g, GraphId false_g, const AnfNodePtr &condition_output) override;
// set args of child graph.the arg maybe come from a output of other child graphs,or from final graph's parameter
void SetChildGraphInput(GraphId g, const VectorRef &args) override;
// get graph id in child graphs by ME front anf node pointer
GraphId GetGraphIdByNode(const AnfNodePtr &front_anf) const override;
// get graph id of final graph
GraphId GetFinalRunGraph() const override { return final_graph_id_; }
// insert active to graph
void SetActive(GraphId, GraphId) override;
// compile child graph when session have multiple child graphs
void CompileChildGraph(const KernelGraphPtr &child_graph);
void RecurseGetSummaryNodes(KernelGraph *graph, std::map<std::string, std::pair<AnfNodePtr, int>> *summary);
void GetSummaryNodes(KernelGraph *graph);
private:
void InitRuntimeResource();
void SelectKernel(const KernelGraph &kernel_graph) const;
void HardwareOptimize(const std::shared_ptr<KernelGraph> &kernel_graph) const;
void AdjustKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const;
void RunOpAdjustKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const;
void AssignStream(NotNull<KernelGraphPtr> kernel_graph) const;
void BuildKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const;
void MemoryAlloc(KernelGraph *kernel_graph) const;
void RunOpMemoryAlloc(const std::vector<tensor::TensorPtr> &input_tensors, KernelGraph *kernel_graph) const;
void RunOpMemoryClear(const KernelGraph *kernel_graph) const;
void GenerateTaskInfo(const std::shared_ptr<KernelGraph> &kernel_graph) const;
void LoadTask(const std::shared_ptr<KernelGraph> &kernel_graph) const;
void ExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) const;
void Dump(const std::shared_ptr<KernelGraph> &kernel_graph) const;
void ExportChildGraphs(const GraphId graph_id);
void LoadTensor(const std::shared_ptr<KernelGraph> &kernel_graph) const;
// below functions are used for run op
void RunOpHardwareOptimize(const std::shared_ptr<session::KernelGraph> &kernel_graph) const;
void RunOpExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) const;
size_t SetChildGraphInput(const KernelGraphPtr &graph, const AnfNodePtr &node, size_t input_index);
size_t SetChildGraphInput(const KernelGraphPtr &graph, const ValuePtr &value, size_t input_index);
size_t SetChildGraphInput(const KernelGraphPtr &graph, const VectorRef &vec_args, size_t input_index);
void SetFinalGraphOutput(const AnfNodePtr &node);
void SetFinalGraphOutput(const ValuePtr &value);
void SetFinalGraphOutput(const VectorRef &vec_output);
void SplitGraph(NotNull<KernelGraphPtr> graph, const std::set<PrimitivePtr> &cut_prims,
const NotNull<std::set<KernelGraphPtr> *> memo);
// split graphs with recurse from root graph
void SplitGraphs(NotNull<KernelGraphPtr> root_graph);
void BackendOptimization(const std::vector<KernelGraphPtr> &all_graphs);
void LinkChildGraphs(NotNull<KernelGraphPtr> graph);
void RootGraphExecutorValidate(NotNull<KernelGraphPtr> graph);
std::vector<AnfNodePtr> ConstructSplitedGraph(const KernelGraphPtr &new_kernel_graph,
const std::vector<CNodePtr> &list);
void RecurseCompileGraph(NotNull<KernelGraphPtr> graph, const NotNull<std::set<KernelGraphPtr> *> memo);
void RecurseSplitGraph(NotNull<KernelGraphPtr> graph, const NotNull<std::set<KernelGraphPtr> *> memo);
AnfNodePtr BindNewCallToNewGraph(NotNull<KernelGraphPtr> graph, const std::vector<CNodePtr> &child_graph_list);
// merge execution order list of child graphs
void MergeGraphExecOrder();
// insert assion op to sync data bettween different graphs
void InsertAssignToGraph(GraphId graph_id, const AnfNodePtr &from, const AnfNodePtr &to);
// insert mutiple assigns to graph
void InsertMultipleAssignToGraph(GraphId graph_id, const AnfNodePtr &from, const AnfNodePtr &to);
// insert active op to graph
void InsertStreamActiveToGraph(GraphId graph_id, uint32_t actived_stream);
// get execute index of graph
size_t ExecOrderOfChildGraph(GraphId final_graph, GraphId child_graph);
// handle condition graph from vm
void InsertSwitchToGraph(GraphId condition_graph_id, GraphId true_graph_id);
// insert depend to graph, used to attch control nodes to graph
void InsertDependToGraph(GraphId graph_id, const AnfNodePtr &attch_node);
// insert depend to graph, used to attch control nodes to graph
void InsertControlDependToGraph(GraphId graph_id, const AnfNodePtr &first_node, const AnfNodePtr &second_node);
// set child graph parameter if front arg is a anf
void SetChildGraphParameter(const AnfNodePtr &front_anf, GraphId to_graph_id, size_t input_idx);
// set child graph parameter if front arg is a tensor
void SetChildGraphParameter(const tensor::TensorPtr &front_tensor, GraphId to_graph_id, size_t input_idx);
// update the execution order of all child graphs
void UpdateGraphOrder(GraphId to_graph);
// handle switch when merge
void MergeSwitchCompile();
// get graph order vector by graph id
std::vector<GraphId> &GetGraphOrder(GraphId final_graph_id);
// get graph order type vector by graph id
std::vector<GraphType> &GetGraphOrderType(GraphId final_graph_id);
// copy output of if and else
void CopyOutputOfIf(GraphId false_graph_id);
// check if graph cache exist
bool GraphCacheExist(const GraphInfo &graph_info) const;
// insert all assign to child graph
void InsertAllAssigns();
// create fake output of final graph
AnfNodePtr CreateFakeOutput(GraphId final_graph_id, const AnfNodePtr &true_output);
// sync intial tensors' data to device
void SyncInitialTenosrToDevice();
void SetFinalGraphSummaryFlag(const std::shared_ptr<KernelGraph> &kernel_graph);
// member variables
// key is final_graph_id,value is child graph execute order of final graph
std::unordered_map<GraphId, std::vector<GraphId>> graph_execute_orders_;
// key is final_graph_id,value is the graph types of child graphs
std::unordered_map<GraphId, std::vector<GraphType>> graph_order_types_;
// record condition graph of while
std::unordered_map<GraphId, GraphId> while_condition_graphs_;
// record all conditions
std::unordered_map<GraphId, std::pair<GraphId, GraphId>> switches_;
std::unordered_map<GraphId, AnfNodePtr> condition_output_;
// share parameters
std::vector<std::tuple<AnfNodePtr, GraphId, size_t>> assigns_;
// initial tensors, these tensor will sync data to device before run graph
std::map<std::pair<GraphId, size_t>, tensor::TensorPtr> initial_tenosrs_;
// final_graph_id is used in every root graph has it's own session situation
GraphId final_graph_id_;
};
MS_REG_SESSION(kAscendDevice, AscendSession);
} // namespace session
} // namespace mindspore
#endif // MINDSPORE_CCSRC_SESSION_ASCEND_SESSION_H