You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
5.6 KiB
151 lines
5.6 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
Image classifiation.
|
|
"""
|
|
import math
|
|
import mindspore.nn as nn
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore.common import initializer as init
|
|
from mindspore.common.initializer import initializer
|
|
from .utils.var_init import default_recurisive_init, KaimingNormal
|
|
|
|
|
|
def _make_layer(base, args, batch_norm):
|
|
"""Make stage network of VGG."""
|
|
layers = []
|
|
in_channels = 3
|
|
for v in base:
|
|
if v == 'M':
|
|
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
|
|
else:
|
|
weight = 'ones'
|
|
if args.initialize_mode == "XavierUniform":
|
|
weight_shape = (v, in_channels, 3, 3)
|
|
weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32).to_tensor()
|
|
|
|
conv2d = nn.Conv2d(in_channels=in_channels,
|
|
out_channels=v,
|
|
kernel_size=3,
|
|
padding=args.padding,
|
|
pad_mode=args.pad_mode,
|
|
has_bias=args.has_bias,
|
|
weight_init=weight)
|
|
if batch_norm:
|
|
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()]
|
|
else:
|
|
layers += [conv2d, nn.ReLU()]
|
|
in_channels = v
|
|
return nn.SequentialCell(layers)
|
|
|
|
|
|
class Vgg(nn.Cell):
|
|
"""
|
|
VGG network definition.
|
|
|
|
Args:
|
|
base (list): Configuration for different layers, mainly the channel number of Conv layer.
|
|
num_classes (int): Class numbers. Default: 1000.
|
|
batch_norm (bool): Whether to do the batchnorm. Default: False.
|
|
batch_size (int): Batch size. Default: 1.
|
|
include_top(bool): Whether to include the 3 fully-connected layers at the top of the network. Default: True.
|
|
|
|
Returns:
|
|
Tensor, infer output tensor.
|
|
|
|
Examples:
|
|
>>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
|
>>> num_classes=1000, batch_norm=False, batch_size=1)
|
|
"""
|
|
|
|
def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1, args=None, phase="train",
|
|
include_top=True):
|
|
super(Vgg, self).__init__()
|
|
_ = batch_size
|
|
self.layers = _make_layer(base, args, batch_norm=batch_norm)
|
|
self.include_top = include_top
|
|
self.flatten = nn.Flatten()
|
|
dropout_ratio = 0.5
|
|
if not args.has_dropout or phase == "test":
|
|
dropout_ratio = 1.0
|
|
self.classifier = nn.SequentialCell([
|
|
nn.Dense(512 * 7 * 7, 4096),
|
|
nn.ReLU(),
|
|
nn.Dropout(dropout_ratio),
|
|
nn.Dense(4096, 4096),
|
|
nn.ReLU(),
|
|
nn.Dropout(dropout_ratio),
|
|
nn.Dense(4096, num_classes)])
|
|
if args.initialize_mode == "KaimingNormal":
|
|
default_recurisive_init(self)
|
|
self.custom_init_weight()
|
|
|
|
def construct(self, x):
|
|
x = self.layers(x)
|
|
if self.include_top:
|
|
x = self.flatten(x)
|
|
x = self.classifier(x)
|
|
return x
|
|
|
|
def custom_init_weight(self):
|
|
"""
|
|
Init the weight of Conv2d and Dense in the net.
|
|
"""
|
|
for _, cell in self.cells_and_names():
|
|
if isinstance(cell, nn.Conv2d):
|
|
cell.weight.set_data(init.initializer(
|
|
KaimingNormal(a=math.sqrt(5), mode='fan_out', nonlinearity='relu'),
|
|
cell.weight.shape, cell.weight.dtype))
|
|
if cell.bias is not None:
|
|
cell.bias.set_data(init.initializer(
|
|
'zeros', cell.bias.shape, cell.bias.dtype))
|
|
elif isinstance(cell, nn.Dense):
|
|
cell.weight.set_data(init.initializer(
|
|
init.Normal(0.01), cell.weight.shape, cell.weight.dtype))
|
|
if cell.bias is not None:
|
|
cell.bias.set_data(init.initializer(
|
|
'zeros', cell.bias.shape, cell.bias.dtype))
|
|
|
|
|
|
cfg = {
|
|
'11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
|
'13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
|
'16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
|
'19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
|
|
}
|
|
|
|
|
|
def vgg16(num_classes=1000, args=None, phase="train"):
|
|
"""
|
|
Get Vgg16 neural network with batch normalization.
|
|
|
|
Args:
|
|
num_classes (int): Class numbers. Default: 1000.
|
|
args(namespace): param for net init.
|
|
phase(str): train or test mode.
|
|
|
|
Returns:
|
|
Cell, cell instance of Vgg16 neural network with batch normalization.
|
|
|
|
Examples:
|
|
>>> vgg16(num_classes=1000, args=args)
|
|
"""
|
|
|
|
if args is None:
|
|
from .config import cifar_cfg
|
|
args = cifar_cfg
|
|
net = Vgg(cfg['16'], num_classes=num_classes, args=args, batch_norm=args.batch_norm, phase=phase)
|
|
return net
|