You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							151 lines
						
					
					
						
							5.6 KiB
						
					
					
				
			
		
		
	
	
							151 lines
						
					
					
						
							5.6 KiB
						
					
					
				# Copyright 2020 Huawei Technologies Co., Ltd
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
# http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
# ============================================================================
 | 
						|
"""
 | 
						|
Image classifiation.
 | 
						|
"""
 | 
						|
import math
 | 
						|
import mindspore.nn as nn
 | 
						|
import mindspore.common.dtype as mstype
 | 
						|
from mindspore.common import initializer as init
 | 
						|
from mindspore.common.initializer import initializer
 | 
						|
from .utils.var_init import default_recurisive_init, KaimingNormal
 | 
						|
 | 
						|
 | 
						|
def _make_layer(base, args, batch_norm):
 | 
						|
    """Make stage network of VGG."""
 | 
						|
    layers = []
 | 
						|
    in_channels = 3
 | 
						|
    for v in base:
 | 
						|
        if v == 'M':
 | 
						|
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
 | 
						|
        else:
 | 
						|
            weight = 'ones'
 | 
						|
            if args.initialize_mode == "XavierUniform":
 | 
						|
                weight_shape = (v, in_channels, 3, 3)
 | 
						|
                weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32).to_tensor()
 | 
						|
 | 
						|
            conv2d = nn.Conv2d(in_channels=in_channels,
 | 
						|
                               out_channels=v,
 | 
						|
                               kernel_size=3,
 | 
						|
                               padding=args.padding,
 | 
						|
                               pad_mode=args.pad_mode,
 | 
						|
                               has_bias=args.has_bias,
 | 
						|
                               weight_init=weight)
 | 
						|
            if batch_norm:
 | 
						|
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()]
 | 
						|
            else:
 | 
						|
                layers += [conv2d, nn.ReLU()]
 | 
						|
            in_channels = v
 | 
						|
    return nn.SequentialCell(layers)
 | 
						|
 | 
						|
 | 
						|
class Vgg(nn.Cell):
 | 
						|
    """
 | 
						|
    VGG network definition.
 | 
						|
 | 
						|
    Args:
 | 
						|
        base (list): Configuration for different layers, mainly the channel number of Conv layer.
 | 
						|
        num_classes (int): Class numbers. Default: 1000.
 | 
						|
        batch_norm (bool): Whether to do the batchnorm. Default: False.
 | 
						|
        batch_size (int): Batch size. Default: 1.
 | 
						|
        include_top(bool): Whether to include the 3 fully-connected layers at the top of the network. Default: True.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        Tensor, infer output tensor.
 | 
						|
 | 
						|
    Examples:
 | 
						|
        >>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
 | 
						|
        >>>     num_classes=1000, batch_norm=False, batch_size=1)
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1, args=None, phase="train",
 | 
						|
                 include_top=True):
 | 
						|
        super(Vgg, self).__init__()
 | 
						|
        _ = batch_size
 | 
						|
        self.layers = _make_layer(base, args, batch_norm=batch_norm)
 | 
						|
        self.include_top = include_top
 | 
						|
        self.flatten = nn.Flatten()
 | 
						|
        dropout_ratio = 0.5
 | 
						|
        if not args.has_dropout or phase == "test":
 | 
						|
            dropout_ratio = 1.0
 | 
						|
        self.classifier = nn.SequentialCell([
 | 
						|
            nn.Dense(512 * 7 * 7, 4096),
 | 
						|
            nn.ReLU(),
 | 
						|
            nn.Dropout(dropout_ratio),
 | 
						|
            nn.Dense(4096, 4096),
 | 
						|
            nn.ReLU(),
 | 
						|
            nn.Dropout(dropout_ratio),
 | 
						|
            nn.Dense(4096, num_classes)])
 | 
						|
        if args.initialize_mode == "KaimingNormal":
 | 
						|
            default_recurisive_init(self)
 | 
						|
            self.custom_init_weight()
 | 
						|
 | 
						|
    def construct(self, x):
 | 
						|
        x = self.layers(x)
 | 
						|
        if self.include_top:
 | 
						|
            x = self.flatten(x)
 | 
						|
            x = self.classifier(x)
 | 
						|
        return x
 | 
						|
 | 
						|
    def custom_init_weight(self):
 | 
						|
        """
 | 
						|
        Init the weight of Conv2d and Dense in the net.
 | 
						|
        """
 | 
						|
        for _, cell in self.cells_and_names():
 | 
						|
            if isinstance(cell, nn.Conv2d):
 | 
						|
                cell.weight.set_data(init.initializer(
 | 
						|
                    KaimingNormal(a=math.sqrt(5), mode='fan_out', nonlinearity='relu'),
 | 
						|
                    cell.weight.shape, cell.weight.dtype))
 | 
						|
                if cell.bias is not None:
 | 
						|
                    cell.bias.set_data(init.initializer(
 | 
						|
                        'zeros', cell.bias.shape, cell.bias.dtype))
 | 
						|
            elif isinstance(cell, nn.Dense):
 | 
						|
                cell.weight.set_data(init.initializer(
 | 
						|
                    init.Normal(0.01), cell.weight.shape, cell.weight.dtype))
 | 
						|
                if cell.bias is not None:
 | 
						|
                    cell.bias.set_data(init.initializer(
 | 
						|
                        'zeros', cell.bias.shape, cell.bias.dtype))
 | 
						|
 | 
						|
 | 
						|
cfg = {
 | 
						|
    '11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
 | 
						|
    '13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
 | 
						|
    '16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
 | 
						|
    '19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
def vgg16(num_classes=1000, args=None, phase="train"):
 | 
						|
    """
 | 
						|
    Get Vgg16 neural network with batch normalization.
 | 
						|
 | 
						|
    Args:
 | 
						|
        num_classes (int): Class numbers. Default: 1000.
 | 
						|
        args(namespace): param for net init.
 | 
						|
        phase(str): train or test mode.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        Cell, cell instance of Vgg16 neural network with batch normalization.
 | 
						|
 | 
						|
    Examples:
 | 
						|
        >>> vgg16(num_classes=1000, args=args)
 | 
						|
    """
 | 
						|
 | 
						|
    if args is None:
 | 
						|
        from .config import cifar_cfg
 | 
						|
        args = cifar_cfg
 | 
						|
    net = Vgg(cfg['16'], num_classes=num_classes, args=args, batch_norm=args.batch_norm, phase=phase)
 | 
						|
    return net
 |