You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/ops/test_control_ops.py

437 lines
12 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test control ops """
import numpy as np
import mindspore as ms
from mindspore import Tensor
from mindspore import context
from mindspore import nn
from mindspore.common.parameter import Parameter, ParameterTuple
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE)
def cond_data_test(x_init, y_init):
class Net(nn.Cell):
def __init__(self):
""""""
super(Net, self).__init__()
self.square = P.Square()
self.add = P.TensorAdd()
self.value = Tensor(3, dtype=ms.float32)
self.switch = P.GeSwitch()
self.merge = P.Merge()
self.less = P.Less()
def construct(self, x, y):
cond = self.less(x, y)
st1, sf1 = self.switch(x, cond)
st2, sf2 = self.switch(y, cond)
add_ret = self.add(st1, st2)
st3, sf3 = self.switch(self.value, cond)
sq_ret = self.square(sf3)
ret = self.merge((add_ret, sq_ret))
return ret[0]
x = Tensor(x_init, dtype=ms.float32)
y = Tensor(y_init, dtype=ms.float32)
net = Net()
output = net(x, y)
return output
def test_cond_data_true():
output = cond_data_test(3, 8)
print("test_cond_data_true:", output)
def test_cond_data_false():
output = cond_data_test(8, 3)
print("test_cond_data_false:", output)
def if_compile_test(x_init, y_init):
class Net(nn.Cell):
def __init__(self):
""""""
super(Net, self).__init__()
self.square = P.Square()
self.add = P.TensorAdd()
self.value = Tensor(3, dtype=ms.float32)
self.switch = P.GeSwitch()
self.merge = P.Merge()
self.less = P.Less()
def construct(self, x, y):
cond = self.less(x, y)
ret = self.value
if cond:
ret = self.add(x, ret)
ret = self.add(y, ret)
else:
ret = self.square(self.value)
return ret
x = Tensor(x_init, dtype=ms.float32)
y = Tensor(y_init, dtype=ms.float32)
net = Net()
output = net(x, y)
return output
def test_if_none():
class Net(nn.Cell):
def __init__(self, z: None):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = None
net = Net(z)
assert net(x, y) == y
def test_if_str_is_not_none_right():
class Net(nn.Cell):
def __init__(self, z: str):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z == None:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = "ok"
net = Net(z)
assert net(x, y) == y
def test_if_str_is_not_none_left():
class Net(nn.Cell):
def __init__(self, z: str):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if None == self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = "ok"
net = Net(z)
assert net(x, y) == y
def test_if_none_equal_none():
class Net(nn.Cell):
def __init__(self, z: None):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z == None:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = None
net = Net(z)
assert net(x, y) == x
def test_if_str_is_null():
class Net(nn.Cell):
def __init__(self, z: str):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = ""
net = Net(z)
assert net(x, y) == y
def test_if_str_is_true():
class Net(nn.Cell):
def __init__(self, z: str):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 9, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = "ok"
net = Net(z)
assert net(x, y) == x
def test_if_str_equal():
class Net(nn.Cell):
def __init__(self, z: str):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z == "ok":
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = "ok"
net = Net(z)
assert net(x, y) == x
def test_if_tuple_is_null():
class Net(nn.Cell):
def __init__(self, z: tuple):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = ()
net = Net(z)
assert net(x, y) == y
def test_if_tuple_is_not_null():
class Net(nn.Cell):
def __init__(self, z: tuple):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = (1, 2, 3)
net = Net(z)
assert net(x, y) == x
def test_if_dict_is_null():
class Net(nn.Cell):
def __init__(self, z: dict):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = {}
net = Net(z)
assert net(x, y) == y
def test_if_dict_is_not_null():
class Net(nn.Cell):
def __init__(self, z: dict):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = {"one": 1, "two": 2}
net = Net(z)
assert net(x, y) == x
def test_if_else_assign():
class Net(nn.Cell):
def __init__(self, m: list):
""""""
super(Net, self).__init__()
self.m = m
self.n = [4, 5, 6]
def construct(self, x, y):
exp_1 = self.m if self.m else self.n
exp_2 = self.m if exp_1 == self.n else self.n
if exp_2 == self.m:
if self.m:
ret = x
else:
ret = y
else:
if self.m:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = [1, 2]
net = Net(z)
assert net(x, y) == x
def test_if_compile_true():
output = if_compile_test(3, 8)
print("test_if_compile_true:", output)
def test_if_compile_false():
output = if_compile_test(8, 3)
print("test_if_compile_false:", output)
def test_switch_layer():
class Layer1(nn.Cell):
def __init__(self):
super(Layer1, self).__init__()
self.z1 = Parameter(Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z1')
def construct(self, x):
return x * self.z1
class Layer2(nn.Cell):
def __init__(self):
super(Layer2, self).__init__()
self.z2 = Parameter(Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z2')
def construct(self, x):
return x * self.z2
class SwitchLayerCell(nn.Cell):
def __init__(self):
super(SwitchLayerCell, self).__init__()
self.layers = (Layer1(), Layer2())
self.z3 = Parameter(Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
def construct(self, index, x):
ret = F.switch_layer(index, self.layers)(x) * self.z3
return ret
index = Tensor(0)
net = SwitchLayerCell()
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
C.grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
def test_index_to_switch_layer():
class Layer1(nn.Cell):
def __init__(self):
super(Layer1, self).__init__()
self.z1 = Parameter(Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z1')
def construct(self, x):
return x * self.z1
class Layer2(nn.Cell):
def __init__(self):
super(Layer2, self).__init__()
self.z2 = Parameter(Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z2')
def construct(self, x):
return x * self.z2
class SwitchLayerCell(nn.Cell):
def __init__(self):
super(SwitchLayerCell, self).__init__()
self.layers = (Layer1(), Layer2())
self.z3 = Parameter(Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
def construct(self, index, x):
ret = self.layers[index](x) * self.z3
return ret
index = Tensor(0)
net = SwitchLayerCell()
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
C.grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))