You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1117 lines
48 KiB
1117 lines
48 KiB
/**
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "frontend/parallel/step_auto_parallel.h"
|
|
|
|
#include <inttypes.h>
|
|
#include <sys/time.h>
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "ir/anf.h"
|
|
#include "ir/param_info.h"
|
|
#include "ir/tensor.h"
|
|
#include "frontend/optimizer/opt.h"
|
|
#include "frontend/optimizer/optimizer.h"
|
|
#include "frontend/parallel/auto_parallel/dp_algo_costmodel.h"
|
|
#include "frontend/parallel/auto_parallel/edge_costmodel.h"
|
|
#include "frontend/parallel/auto_parallel/graph_costmodel.h"
|
|
#include "frontend/parallel/auto_parallel/rec_core/rec_generate_strategy.h"
|
|
#include "frontend/parallel/auto_parallel/rec_core/rec_parse_graph.h"
|
|
#include "frontend/parallel/auto_parallel/rec_core/rec_partition.h"
|
|
#include "frontend/parallel/context.h"
|
|
#include "frontend/parallel/ops_info/tmp_identity_info.h"
|
|
#include "frontend/parallel/ops_info/reshape_info.h"
|
|
#include "frontend/parallel/graph_util/node_info.h"
|
|
#include "frontend/parallel/step_parallel.h"
|
|
#include "frontend/parallel/strategy_checkpoint/parallel_strategy_checkpoint.h"
|
|
|
|
namespace mindspore {
|
|
namespace parallel {
|
|
bool StepAutoParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &) {
|
|
MS_EXCEPTION_IF_NULL(root);
|
|
MS_EXCEPTION_IF_NULL(ParallelContext::GetInstance());
|
|
std::string parallel_mode = ParallelContext::GetInstance()->parallel_mode();
|
|
// assume no change to graph
|
|
bool changes = false;
|
|
// control whether use model_parallel mode
|
|
if (!root->has_flag(AUTO_PARALLEL) || (parallel_mode != AUTO_PARALLEL) ||
|
|
root->has_flag(AUTO_PARALLEL_RUN_ONCE_ONLY)) {
|
|
return changes;
|
|
}
|
|
// check whether strategy_search_mode is valid
|
|
std::string strategy_search_mode = ParallelContext::GetInstance()->strategy_search_mode();
|
|
if ((strategy_search_mode != DYNAMIC_PROGRAMMING) && (strategy_search_mode != RECURSIVE_PROGRAMMING)) {
|
|
// Setting searching mode: dynanic programming as default.
|
|
strategy_search_mode = DYNAMIC_PROGRAMMING;
|
|
MS_LOG(INFO) << "Non-idicated strategy searching mode, using DP searching mode as default";
|
|
}
|
|
|
|
struct timeval start_time, end_time;
|
|
(void)gettimeofday(&start_time, nullptr);
|
|
|
|
if (MsContext::GetInstance()->get_param<bool>(MS_CTX_SAVE_GRAPHS_FLAG)) {
|
|
draw::Draw(STEP_AUTO_PARALLEL_BEGIN, root);
|
|
}
|
|
MS_LOG(INFO) << "Now entering step auto parallel";
|
|
TOTAL_OPS = 0;
|
|
AnfNodePtr ret = root->get_return();
|
|
std::vector<AnfNodePtr> all_nodes = DeepScopedGraphSearch(ret);
|
|
|
|
if (ParallelInit() != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Parallel init failed";
|
|
}
|
|
|
|
// mark the forward cnodes, parallel only care these nodes
|
|
MarkForwardCNode(root);
|
|
|
|
if (FindCommunicationOp(all_nodes)) {
|
|
MS_LOG(EXCEPTION) << "The graph contain communication op";
|
|
}
|
|
|
|
// search parallelization strategy
|
|
if (strategy_search_mode == DYNAMIC_PROGRAMMING) {
|
|
if (ParallelStrategySearch(all_nodes, root) != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Auto-parallel strategy search failed when using DP searching mode";
|
|
}
|
|
} else if (strategy_search_mode == RECURSIVE_PROGRAMMING) {
|
|
if (ParallelStrategyRecSearch(all_nodes, root) != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Auto-parallel strategy search failed when using RP searching mode";
|
|
}
|
|
} else {
|
|
MS_LOG(EXCEPTION) << "Auto-parallel strategy searching mode unexpected";
|
|
}
|
|
|
|
(void)gettimeofday(&end_time, nullptr);
|
|
uint64_t time = kUSecondInSecond * static_cast<uint64_t>(end_time.tv_sec - start_time.tv_sec);
|
|
time += static_cast<uint64_t>(end_time.tv_usec - start_time.tv_usec);
|
|
MS_LOG(INFO) << "Now leaving step auto parallel, used time: " << time << " us";
|
|
|
|
root->set_flag(AUTO_PARALLEL_RUN_ONCE_ONLY, true);
|
|
return changes;
|
|
}
|
|
|
|
// Given the node, return whether each input is a parameter or a output of a operator.
|
|
// The returned boolean vector should be the same order of the inputs, thus its implementation
|
|
// is closely consistent with ExtractShape() in step_parallel.cc
|
|
std::vector<bool> ExtractInputParameterByNode(const CNodePtr &node) {
|
|
std::vector<bool> is_parameter;
|
|
std::vector<AnfNodePtr> node_inputs{node->inputs()};
|
|
if ((node_inputs.size() == 2) &&
|
|
(AnfNodeIsPrimitive(node_inputs[1], MAKE_TUPLE) || AnfNodeIsPrimitive(node_inputs[1], MAKE_LIST))) {
|
|
node_inputs = node_inputs[1]->cast<CNodePtr>()->inputs();
|
|
}
|
|
for (size_t i = 1; i < node_inputs.size(); ++i) {
|
|
auto input = node_inputs[i];
|
|
|
|
if (input->isa<Parameter>()) {
|
|
auto input_parameter = input->cast<ParameterPtr>();
|
|
is_parameter.push_back(ParameterRequireGrad(input_parameter));
|
|
} else if (input->isa<CNode>() || IsValueNode<tensor::Tensor>(input) || IsValueNode<RefKey>(input)) {
|
|
is_parameter.push_back(false);
|
|
}
|
|
}
|
|
return is_parameter;
|
|
}
|
|
|
|
// Given the type, return the number of bytes to represent this type
|
|
size_t GetLengthOfDataType(const TypePtr &type) {
|
|
switch (type->type_id()) {
|
|
case kNumberTypeBool:
|
|
return sizeof(bool);
|
|
case kNumberTypeInt8:
|
|
return sizeof(int8_t);
|
|
case kNumberTypeInt16:
|
|
return sizeof(int16_t);
|
|
case kNumberTypeInt32:
|
|
return sizeof(int32_t);
|
|
case kNumberTypeInt64:
|
|
return sizeof(int64_t);
|
|
case kNumberTypeUInt8:
|
|
return sizeof(uint8_t);
|
|
case kNumberTypeUInt16:
|
|
return sizeof(uint16_t);
|
|
case kNumberTypeUInt32:
|
|
return sizeof(uint32_t);
|
|
case kNumberTypeUInt64:
|
|
return sizeof(uint64_t);
|
|
case kNumberTypeFloat16:
|
|
return sizeof(float) / 2;
|
|
case kNumberTypeFloat32:
|
|
return sizeof(float);
|
|
case kNumberTypeFloat64:
|
|
return sizeof(double);
|
|
case kNumberTypeInt:
|
|
return sizeof(int);
|
|
case kNumberTypeUInt:
|
|
return sizeof(unsigned int);
|
|
case kNumberTypeFloat:
|
|
return sizeof(float);
|
|
default:
|
|
MS_LOG(EXCEPTION) << "Unexpected type " << type->type_name();
|
|
}
|
|
}
|
|
|
|
size_t GetInputsTypeLen(const AnfNodePtr &input) {
|
|
MS_EXCEPTION_IF_NULL(input);
|
|
if (!input->isa<CNode>() && !input->isa<Parameter>() && !IsValueNode<tensor::Tensor>(input)) {
|
|
MS_LOG(EXCEPTION) << "The input node is not a cnode or parameter or tensor";
|
|
}
|
|
|
|
size_t input_type_len = 0;
|
|
auto type = input->Type();
|
|
MS_EXCEPTION_IF_NULL(type);
|
|
if (type->isa<mindspore::TensorType>()) {
|
|
auto input_element_type = type->cast<mindspore::TensorTypePtr>()->element();
|
|
input_type_len = GetLengthOfDataType(input_element_type);
|
|
} else {
|
|
MS_LOG(EXCEPTION) << "Unknown type: " << type->type_name();
|
|
}
|
|
return input_type_len;
|
|
}
|
|
|
|
std::vector<size_t> ExtractInputTypeLengthByNode(const CNodePtr &node) {
|
|
MS_EXCEPTION_IF_NULL(node);
|
|
std::vector<size_t> inputs_type_len;
|
|
std::vector<AnfNodePtr> node_inputs{node->inputs()};
|
|
|
|
if ((node_inputs.size() == 2) &&
|
|
(AnfNodeIsPrimitive(node_inputs[1], MAKE_TUPLE) || AnfNodeIsPrimitive(node_inputs[1], MAKE_LIST))) {
|
|
node_inputs = node_inputs[1]->cast<CNodePtr>()->inputs();
|
|
}
|
|
|
|
// extract input element length
|
|
for (auto &input : node_inputs) {
|
|
if (IsValueNode<RefKey>(input)) {
|
|
auto func_graph = node->func_graph();
|
|
MS_EXCEPTION_IF_NULL(func_graph);
|
|
std::vector<AnfNodePtr> parameters = FindParameterByRefKeyNode(input, func_graph);
|
|
if (parameters.size() != 1) {
|
|
MS_LOG(EXCEPTION) << "Find parameter by ref key node failed";
|
|
}
|
|
inputs_type_len.push_back(GetInputsTypeLen(parameters[0]));
|
|
} else if (input->isa<CNode>() || input->isa<Parameter>() || IsValueNode<tensor::Tensor>(input)) {
|
|
// extract input shape from parameter and apply node
|
|
inputs_type_len.push_back(GetInputsTypeLen(input));
|
|
}
|
|
}
|
|
return inputs_type_len;
|
|
}
|
|
|
|
std::vector<TypePtr> ExtractOutputTypeByNode(const CNodePtr &node) {
|
|
MS_EXCEPTION_IF_NULL(node);
|
|
std::vector<TypePtr> outputs_type;
|
|
// extract output element type
|
|
auto primary_output_type = node->Type();
|
|
MS_EXCEPTION_IF_NULL(primary_output_type);
|
|
if (primary_output_type->isa<mindspore::Tuple>()) {
|
|
// in this case, the output is a tuple
|
|
auto tuple_output_type = primary_output_type->cast<mindspore::TuplePtr>();
|
|
auto elements = tuple_output_type->elements();
|
|
for (auto &ele : elements) {
|
|
if (ele->isa<mindspore::TensorType>()) {
|
|
auto ele_element_type = ele->cast<mindspore::TensorTypePtr>()->element();
|
|
outputs_type.push_back(ele_element_type);
|
|
} else {
|
|
MS_LOG(EXCEPTION) << "Unknown type: " << primary_output_type->type_name();
|
|
}
|
|
}
|
|
} else {
|
|
// in this case, the output is a single tensor
|
|
if (primary_output_type->isa<mindspore::TensorType>()) {
|
|
auto element_type = primary_output_type->cast<mindspore::TensorTypePtr>()->element();
|
|
outputs_type.push_back(element_type);
|
|
} else {
|
|
MS_LOG(EXCEPTION) << "Unknown type: " << primary_output_type->type_name();
|
|
}
|
|
}
|
|
return outputs_type;
|
|
}
|
|
|
|
bool IsElementWiseOperator(const std::string &op_name) {
|
|
static const std::set<std::string> elementwise_op = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU,
|
|
SQRT, CAST, POW, EXP, LOG, COS,
|
|
ACOS, LOGICALNOT, NEG, SQUARE, SIGMOID};
|
|
auto iter = elementwise_op.find(op_name);
|
|
return (iter != elementwise_op.end());
|
|
}
|
|
|
|
bool IsSplittableOperator(const std::string &op_name) {
|
|
// clang-format off
|
|
static const std::set<std::string> splittable_op =
|
|
{MATMUL, TRANSPOSE, GELU, TANH, SOFTMAX, SUB, MUL, DIV, RESHAPE, GREATER, LOG_SOFTMAX, ACTIVATION, PRELU,
|
|
FLOORDIV, L2_NORMALIZE, TENSOR_ADD, MAXPOOL, MAXPOOLV2, VIRTUAL_DATA_SET, RELU, ONEHOT, DROPOUT_DO_MASK,
|
|
REDUCE_MAX, REDUCE_MIN, ARGMAXWITHVALUE, ARGMINWITHVALUE, REDUCE_SUM, CONV2D, FUSE_BATCH_NORM, POOLING,
|
|
MAX_POOL_WITH_ARGMAX, SIMPLE_MEAN, FLATTEN, BATCH_NORM, LAYER_NORM, BIAS_ADD, ASSIGN_SUB, COS, ACOS, EXP, PACK,
|
|
LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT, CONCAT,
|
|
STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE, SPARSE_GATHERV2, TILE, DROPOUT,
|
|
SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS,
|
|
EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT, BROADCAST_TO};
|
|
// clang-format on
|
|
|
|
auto iter = splittable_op.find(op_name);
|
|
return (iter != splittable_op.end());
|
|
}
|
|
|
|
bool IsAutoParallelCareNode(const CNodePtr &cnode) {
|
|
MS_EXCEPTION_IF_NULL(cnode);
|
|
ValueNodePtr prim_node = cnode->input(0)->cast<ValueNodePtr>();
|
|
if (prim_node == nullptr) {
|
|
return false;
|
|
}
|
|
PrimitivePtr prim = GetValueNode<PrimitivePtr>(prim_node);
|
|
if (prim == nullptr) {
|
|
return false;
|
|
}
|
|
bool bool_result = IsParallelCareNode(cnode) && !IsSplittableOperator(prim->name());
|
|
if (bool_result && (prim->name() != MAKE_TUPLE) && (prim->name() != MAKE_LIST)) {
|
|
MS_LOG(EXCEPTION) << "Should implementing OperatorInfo for: " << prim->name();
|
|
} else if (prim->name() == CAST) {
|
|
if (cnode->fullname_with_scope().find(OPTIMIZER_SUB_STRING) != std::string::npos) {
|
|
// Do not care CASTs from optimizer
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return IsParallelCareNode(cnode) && IsSplittableOperator(prim->name());
|
|
}
|
|
|
|
OperatorInfoPtr CreateTheOperatorInfo(const PrimitivePtr &prim, const CNodePtr &cnode, StrategyMap *stra_map) {
|
|
MS_EXCEPTION_IF_NULL(prim);
|
|
MS_EXCEPTION_IF_NULL(cnode);
|
|
auto attrs = prim->attrs();
|
|
std::vector<Shapes> shape_list = ExtractShape(cnode);
|
|
if (shape_list.empty()) {
|
|
MS_LOG(EXCEPTION) << "Failure: node " << cnode->UniqueId() << " failed to extract shape";
|
|
}
|
|
// Create an OperatorInfo instance
|
|
OperatorInfoPtr operator_info = NewOperatorInstance(prim, attrs, shape_list);
|
|
MS_EXCEPTION_IF_NULL(operator_info);
|
|
// Set the parameter information for this OperatorInfo (whether the inputs are parameters or not)
|
|
std::vector<bool> parameter_info = ExtractInputParameterByNode(cnode);
|
|
if (operator_info->set_is_parameter(parameter_info) != SUCCESS) {
|
|
MS_LOG(ERROR) << "Initializing parameter information failed for operator: " << operator_info->name();
|
|
return nullptr;
|
|
}
|
|
// Set the data type for inputs and outputs of this OperatorInfo
|
|
auto inputs_type_length = ExtractInputTypeLengthByNode(cnode);
|
|
auto outputs_type = ExtractOutputTypeByNode(cnode);
|
|
std::vector<size_t> outputs_type_length;
|
|
outputs_type_length.reserve(outputs_type.size());
|
|
std::transform(outputs_type.begin(), outputs_type.end(), std::back_inserter(outputs_type_length),
|
|
GetLengthOfDataType);
|
|
if (operator_info->SetInputAndOutputTypeLength(inputs_type_length, outputs_type_length) != SUCCESS) {
|
|
MS_LOG(ERROR) << "Setting the lengths of inputs and outputs failed for operator: " << operator_info->name();
|
|
return nullptr;
|
|
}
|
|
if (operator_info->set_outputs_type(outputs_type) != SUCCESS) {
|
|
MS_LOG(ERROR) << "Setting the types of outputs failed for operator: " << operator_info->name();
|
|
return nullptr;
|
|
}
|
|
// When the 'inputs' contains numerical values for some operators, these values should be extracted from
|
|
// ANF graph
|
|
auto &inputs = cnode->inputs();
|
|
std::vector<ValuePtr> input_value;
|
|
for (size_t index = 1; index < inputs.size(); ++index) {
|
|
if (inputs[index]->isa<ValueNode>()) {
|
|
input_value.push_back(GetValueNode(inputs[index]));
|
|
} else {
|
|
input_value.emplace_back(nullptr);
|
|
}
|
|
}
|
|
operator_info->set_input_value(input_value);
|
|
operator_info->set_outputs_dtype(cnode->Type());
|
|
operator_info->set_cnode(cnode);
|
|
// key of strategy map
|
|
std::string strategy_key_name = "";
|
|
auto param_names = NodeParameterName(cnode);
|
|
if (!param_names.empty()) {
|
|
strategy_key_name = prim->name() + "_" + param_names[0].first;
|
|
}
|
|
bool load_strategy_from_ckpt =
|
|
StrategyCheckpoint::GetInstance().LoadCheckPointOn() && stra_map->find(strategy_key_name) != stra_map->end();
|
|
// If no strategy has been configured for this operator, then candidate strategies are generated for
|
|
// auto-strategy searching; if this primitive is CAST, we ignore the user-specified strategy.
|
|
// if strategy is set to load from checkpoint, it is prefer to load strategy from checkpoint .
|
|
if ((!StrategyFound(attrs) || prim->name() == CAST) && !load_strategy_from_ckpt) {
|
|
// Compute split_flag_list_, indicating which input has batch dimension. This is ONLY used for preparation for
|
|
// BatchParallelInfo operator
|
|
operator_info->ComputeBatchSplitFlagList();
|
|
if (operator_info->GenerateStrategies(0) != SUCCESS) {
|
|
MS_LOG(ERROR) << "Strategy search for Operator " << operator_info->name() << " failed.";
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
// In this case, the configured strategy should be extracted to help setting cost
|
|
StrategyPtr strategyPtr;
|
|
if (load_strategy_from_ckpt) {
|
|
strategyPtr = (*stra_map)[strategy_key_name];
|
|
} else {
|
|
strategyPtr = parallel::ExtractStrategy(attrs);
|
|
}
|
|
if (strategyPtr != nullptr) {
|
|
if (prim->name() == RESHAPE) {
|
|
MS_LOG(EXCEPTION) << "Setting strategy for Reshape goes for nothing!";
|
|
}
|
|
// Set cost for this configured strategy
|
|
if (operator_info->SetCostUnderStrategy(strategyPtr) != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Failure: operator " << prim->name() << " SetCostUnderStrategy failed";
|
|
} else if (FULLY_USE_DEVICES) {
|
|
// If configured to fully use devices, then checking for the user-specified strategy
|
|
int32_t used_devices = operator_info->used_devices();
|
|
MS_EXCEPTION_IF_NULL(g_device_manager);
|
|
auto total_device_num = g_device_manager->GetDeviceListByStageId(0).size();
|
|
// 'used_devices == 1' means that ALL-1 strategy, which is valid in auto-parallel
|
|
if (used_devices == 1) {
|
|
return operator_info;
|
|
}
|
|
// 'used_devices == -1' means that 'used_devices_' is not set
|
|
if ((used_devices == -1) || IntToSize(used_devices) != total_device_num) {
|
|
MS_LOG(EXCEPTION) << "In configuration 'FULLY_USE_DEVICES' = True, "
|
|
<< "but the specified strategy uses device: " << used_devices
|
|
<< ", total devices: " << total_device_num;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return operator_info;
|
|
}
|
|
|
|
// Using CNode's UniqueIds to construct nodes
|
|
Status ConstructCostGraphNodesByUniqueId(const std::vector<AnfNodePtr> &all_nodes, const FuncGraphPtr &) {
|
|
MS_LOG(INFO) << "Constructing nodes for cost graph begins.";
|
|
entire_costgraph = std::make_shared<CostGraph>();
|
|
entire_costgraph->SetDeviceMemoryAndCostParameter();
|
|
// The map from CNode's UniqueId to its operatorInfo
|
|
std::map<std::string, OperatorInfoPtr> from_cnode_to_info;
|
|
// extract strategy from checkpoint for multi-train
|
|
StrategyMap stra_map;
|
|
if (StrategyCheckpoint::GetInstance().LoadCheckPointOn()) {
|
|
if (StrategyCheckpoint::GetInstance().Load(&stra_map) != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Load strategy checkpoint failed";
|
|
}
|
|
}
|
|
// Step 1
|
|
for (auto &node : all_nodes) {
|
|
// NOTE: we only care about splittable Primitive operators
|
|
auto cnode = node->cast<CNodePtr>();
|
|
bool bool_result = (cnode == nullptr) || (!IsValueNode<Primitive>(cnode->input(0)));
|
|
if (bool_result) {
|
|
continue;
|
|
}
|
|
ValueNodePtr prim_anf_node = cnode->input(0)->cast<ValueNodePtr>();
|
|
if (!IsAutoParallelCareNode(cnode)) {
|
|
// Needed by rec_parser
|
|
if (ParallelContext::GetInstance()->strategy_search_mode() == RECURSIVE_PROGRAMMING) {
|
|
auto prev_cnode = GetInternalOperatorInfo(cnode, prim_anf_node);
|
|
if (prev_cnode != nullptr) {
|
|
entire_costgraph->add_tuple_getitem(std::make_pair(cnode->UniqueId(), prev_cnode->UniqueId()));
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
PrimitivePtr prim = GetValueNode<PrimitivePtr>(prim_anf_node);
|
|
MS_EXCEPTION_IF_NULL(prim);
|
|
|
|
auto search_cnode = from_cnode_to_info.find(cnode->UniqueId());
|
|
if (search_cnode == from_cnode_to_info.end()) {
|
|
auto operator_info = CreateTheOperatorInfo(prim, cnode, &stra_map);
|
|
if (operator_info == nullptr) {
|
|
return FAILED;
|
|
}
|
|
// Needed by rec_parser
|
|
operator_info->set_type(prim->name());
|
|
std::vector<std::string> inputs_tensor_name = ExtractInputsTensorName(cnode);
|
|
|
|
entire_costgraph->AddOperator(operator_info);
|
|
cnode->set_user_data<OperatorInfo>(operator_info);
|
|
MS_LOG(INFO) << "The CNode with UniqueId: " << cnode->UniqueId()
|
|
<< " and UniqueIdThroughCopy: " << cnode->UniqueIdThroughCopy()
|
|
<< " is set OperatorInfo: " << operator_info->name() << ", Primitive: " << prim->name();
|
|
(void)from_cnode_to_info.emplace(std::make_pair(cnode->UniqueIdThroughCopy(), operator_info));
|
|
// Needed by rec_parser
|
|
entire_costgraph->add_inputs_tensor_name(inputs_tensor_name);
|
|
} else {
|
|
// Two CNODEs' UniqueIds should not be equal
|
|
MS_LOG(EXCEPTION) << "The CNode with UniqueId: " << cnode->UniqueId()
|
|
<< " and UniqueIdThroughCopy: " << cnode->UniqueIdThroughCopy()
|
|
<< " is set OperatorInfo: " << search_cnode->second->name() << ", Primitive: " << prim->name();
|
|
}
|
|
}
|
|
|
|
MS_LOG(INFO) << "Constructing nodes for cost graph ends.";
|
|
return SUCCESS;
|
|
}
|
|
|
|
// Using CNode's UniqueIdThroughCopys to construct nodes
|
|
Status ConstructCostGraphNodesByUniqueIdTC(const std::vector<AnfNodePtr> &all_nodes, const FuncGraphPtr &) {
|
|
MS_LOG(INFO) << "Constructing nodes for cost graph begins.";
|
|
entire_costgraph = std::make_shared<CostGraph>();
|
|
entire_costgraph->SetDeviceMemoryAndCostParameter();
|
|
// The map from CNode's UniqueIdThroughCopy to its operatorInfo
|
|
std::map<std::string, OperatorInfoPtr> from_cnode_to_info;
|
|
// extract strategy from checkpoint for multi-train
|
|
StrategyMap stra_map;
|
|
if (StrategyCheckpoint::GetInstance().LoadCheckPointOn()) {
|
|
if (StrategyCheckpoint::GetInstance().Load(&stra_map) != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Load strategy checkpoint failed";
|
|
}
|
|
}
|
|
for (auto &node : all_nodes) {
|
|
// NOTE: we only care about splittable Primitive operators
|
|
auto cnode = node->cast<CNodePtr>();
|
|
bool bool_result = (cnode == nullptr) || (!IsValueNode<Primitive>(cnode->input(0)));
|
|
if (bool_result) {
|
|
continue;
|
|
}
|
|
ValueNodePtr prim_anf_node = cnode->input(0)->cast<ValueNodePtr>();
|
|
if (!IsAutoParallelCareNode(cnode)) {
|
|
// Needed by rec_parser
|
|
if (ParallelContext::GetInstance()->strategy_search_mode() == RECURSIVE_PROGRAMMING) {
|
|
auto prev_cnode = GetInternalOperatorInfo(cnode, prim_anf_node);
|
|
if (prev_cnode != nullptr) {
|
|
entire_costgraph->add_tuple_getitem(std::make_pair(cnode->UniqueId(), prev_cnode->UniqueId()));
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
PrimitivePtr prim = GetValueNode<PrimitivePtr>(prim_anf_node);
|
|
|
|
// Find the operatorInfo if it exists
|
|
auto search_cnode = from_cnode_to_info.find(cnode->UniqueIdThroughCopy());
|
|
if (search_cnode == from_cnode_to_info.end()) {
|
|
// In this case, the corresponding OperatorInfo is not created, create the new one.
|
|
auto operator_info = CreateTheOperatorInfo(prim, cnode, &stra_map);
|
|
if (operator_info == nullptr) {
|
|
return FAILED;
|
|
}
|
|
// Needed by rec_parser
|
|
operator_info->set_type(prim->name());
|
|
std::vector<std::string> inputs_tensor_name = ExtractInputsTensorName(cnode);
|
|
|
|
entire_costgraph->AddOperator(operator_info);
|
|
cnode->set_user_data<OperatorInfo>(operator_info);
|
|
MS_LOG(INFO) << "The CNode with UniqueId: " << cnode->UniqueId()
|
|
<< " and UniqueIdThroughCopy: " << cnode->UniqueIdThroughCopy()
|
|
<< " is set OperatorInfo: " << operator_info->name() << ", Primitive: " << prim->name();
|
|
(void)from_cnode_to_info.emplace(std::make_pair(cnode->UniqueIdThroughCopy(), operator_info));
|
|
// Needed by rec_parser
|
|
entire_costgraph->add_inputs_tensor_name(inputs_tensor_name);
|
|
} else {
|
|
auto current_op_ptr = search_cnode->second;
|
|
if (current_op_ptr == nullptr) {
|
|
MS_LOG(EXCEPTION) << "Find " << prim->name() << " from CostGraph failed.";
|
|
} else {
|
|
bool is_find_wrong = (current_op_ptr->name().find(VIRTUAL_DATA_SET_INFO) == std::string::npos) &&
|
|
(current_op_ptr->name().find(BATCH_PARALLEL) == std::string::npos) &&
|
|
(current_op_ptr->name().find(prim->name()) == std::string::npos);
|
|
if (is_find_wrong) {
|
|
MS_LOG(EXCEPTION) << "The OperatorInfo: " << current_op_ptr->name()
|
|
<< " does not match the Prim: " << prim->name();
|
|
}
|
|
|
|
// Needed by rec_parser
|
|
ModifyInputsTensorNameListIfOperatorInfoCreated(current_op_ptr->name(), cnode->UniqueId());
|
|
|
|
cnode->set_user_data<OperatorInfo>(current_op_ptr);
|
|
MS_LOG(INFO) << "The CNode with UniqueId: " << cnode->UniqueId()
|
|
<< " and UniqueIdThroughCopy: " << cnode->UniqueIdThroughCopy()
|
|
<< " is set OperatorInfo: " << current_op_ptr->name() << ", Primitive: " << prim->name();
|
|
}
|
|
}
|
|
}
|
|
|
|
MS_LOG(INFO) << "Constructing nodes for cost graph ends.";
|
|
return SUCCESS;
|
|
}
|
|
|
|
void ConstructCostGraphEdges(const std::vector<AnfNodePtr> &all_nodes) {
|
|
// Step 2
|
|
MS_LOG(INFO) << "Constructing edges for cost graph begins.";
|
|
for (auto &node : all_nodes) {
|
|
auto cnode = node->cast<CNodePtr>();
|
|
bool bool_result_cnode = (cnode == nullptr) || !IsValueNode<Primitive>(cnode->input(0));
|
|
if (bool_result_cnode) {
|
|
continue;
|
|
}
|
|
auto &inputs = cnode->inputs();
|
|
ValueNodePtr prim_anf_node = inputs[0]->cast<ValueNodePtr>();
|
|
if (!IsAutoParallelCareNode(cnode)) {
|
|
continue;
|
|
}
|
|
PrimitivePtr prim = GetValueNode<PrimitivePtr>(prim_anf_node);
|
|
size_t edge_count = 0;
|
|
|
|
auto node_op_info = cnode->user_data<OperatorInfo>();
|
|
|
|
for (size_t i = 1; i < inputs.size(); ++i) {
|
|
auto prev_cnode = inputs[i]->cast<CNodePtr>();
|
|
bool bool_result_prev_cnode = (prev_cnode == nullptr) || (!IsValueNode<Primitive>(prev_cnode->input(0)));
|
|
if (bool_result_prev_cnode) {
|
|
continue;
|
|
}
|
|
ValueNodePtr prev_prim_anf_node = prev_cnode->input(0)->cast<ValueNodePtr>();
|
|
PrimitivePtr prev_prim = prev_prim_anf_node->value()->cast<PrimitivePtr>();
|
|
size_t output_index = 0;
|
|
|
|
bool bool_result =
|
|
(IsAutoParallelCareNode(prev_cnode)) || (prev_prim->name() == TUPLE_GETITEM) || (prev_prim->name() == DEPEND);
|
|
while (bool_result) {
|
|
if (IsAutoParallelCareNode(prev_cnode)) {
|
|
auto prev_op_info = prev_cnode->user_data<OperatorInfo>();
|
|
std::string edge_name = prev_op_info->name() + OPERATOR_TO_OPERATOR_CONNECTOR + node_op_info->name();
|
|
// If the edge between these two operators already has been added, then the edge will not be added again.
|
|
if (entire_costgraph->IsEdgeInCostGraph(edge_name, output_index, i - 1)) {
|
|
break;
|
|
}
|
|
EdgePtr edge_ptr;
|
|
MS_LOG(INFO) << "Creating edge: " << edge_name;
|
|
|
|
bool follow_strategy = (prim->name() == RESHAPE) || (prev_prim->name() == RESHAPE) ||
|
|
(ELEMENTWISE_OP_STRA_FOLLOW && IsElementWiseOperator(prev_prim->name()));
|
|
if (follow_strategy) {
|
|
// Redistribution in not allowed on the edge.
|
|
// Elementwise operators have the same strategy as their previous operators.
|
|
edge_ptr = std::make_shared<Edge>(edge_name, prev_op_info, node_op_info, output_index, i - 1, false, true);
|
|
} else {
|
|
edge_ptr = std::make_shared<Edge>(edge_name, prev_op_info, node_op_info, output_index, i - 1, false);
|
|
}
|
|
|
|
// Init costs for this edge
|
|
if (edge_ptr->InitEdgeCost() != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Edge cost initialization failed";
|
|
}
|
|
node_op_info->AddPrevEdge(edge_ptr);
|
|
prev_op_info->AddSuccEdge(edge_ptr);
|
|
entire_costgraph->AddEdge(prev_op_info, node_op_info, edge_ptr);
|
|
MS_LOG(INFO) << "Successfully adding the edge between " << prev_op_info->name() << " and "
|
|
<< node_op_info->name();
|
|
edge_count++;
|
|
|
|
break;
|
|
} else if (prev_prim->name() == TUPLE_GETITEM) {
|
|
// In this case, 'prev_anf_node' is 'tuple_getitem', the actual precursor node is node before
|
|
// this 'tuple_getitem'
|
|
MS_LOG(INFO) << "Jumping the 'tuple_getitem' operator.";
|
|
output_index = IntToSize(GetValue<int>(GetValueNode(prev_cnode->input(2))));
|
|
prev_cnode = prev_cnode->input(1)->cast<CNodePtr>();
|
|
bool bool_result_tuple = (prev_cnode == nullptr) || (!IsValueNode<Primitive>(prev_cnode->input(0)));
|
|
if (bool_result_tuple) {
|
|
break;
|
|
}
|
|
prev_prim_anf_node = prev_cnode->input(0)->cast<ValueNodePtr>();
|
|
prev_prim = prev_prim_anf_node->value()->cast<PrimitivePtr>();
|
|
if (!IsAutoParallelCareNode(prev_cnode)) {
|
|
MS_LOG(EXCEPTION) << "Did not create OperatorInfo for : " << prev_prim->name();
|
|
}
|
|
MS_LOG(INFO) << "Jumped the 'tuple_getitem' operator, "
|
|
<< "and creating an edge between the Operator before "
|
|
<< "'tuple_getitem' and the Operator after 'tuple_getitem'.";
|
|
} else if (prev_prim->name() == DEPEND) {
|
|
// In this case, 'prev_anf_node' is 'depend', the actual precursor node is node before
|
|
// this 'depend'
|
|
MS_LOG(INFO) << "Jumping the 'depend' operator.";
|
|
prev_cnode = prev_cnode->input(1)->cast<CNodePtr>();
|
|
bool bool_result_depend = (prev_cnode == nullptr) || (!IsValueNode<Primitive>(prev_cnode->input(0)));
|
|
if (bool_result_depend) {
|
|
break;
|
|
}
|
|
prev_prim_anf_node = prev_cnode->input(0)->cast<ValueNodePtr>();
|
|
prev_prim = prev_prim_anf_node->value()->cast<PrimitivePtr>();
|
|
MS_LOG(INFO) << "Jumped the 'depend' operator, "
|
|
<< "and creating an edge between the Operator before "
|
|
<< "'depend' and the Operator after 'depend'.";
|
|
}
|
|
bool_result =
|
|
(IsAutoParallelCareNode(prev_cnode)) || (prev_prim->name() == TUPLE_GETITEM) || (prev_prim->name() == DEPEND);
|
|
}
|
|
}
|
|
MS_LOG(INFO) << "Successfully created " << edge_count << " edges for: " << node_op_info->name();
|
|
}
|
|
|
|
MS_LOG(INFO) << "Constructing edges for cost graph ends.";
|
|
}
|
|
|
|
void AugmentCostGraph(const std::vector<AnfNodePtr> &all_nodes) {
|
|
// Step 3
|
|
for (auto &node : all_nodes) {
|
|
ParameterUsersInfo parameter_users_info = FindParameterUsers(node, IsAutoParallelCareNode);
|
|
auto parameter_name = parameter_users_info.first;
|
|
auto target_parameter = parameter_users_info.second.first;
|
|
auto target_set = parameter_users_info.second.second;
|
|
if (target_set.size() <= 1) {
|
|
continue;
|
|
}
|
|
|
|
// Rule out the case when a Parameter being used by a Operator, but the Operator appears in multiple CNODEs
|
|
std::set<std::string> target_without_duplicate;
|
|
for (auto &target : target_set) {
|
|
auto target_cnode = target.first->cast<CNodePtr>();
|
|
auto input_index = target.second;
|
|
(void)target_without_duplicate.insert(std::to_string(input_index) +
|
|
target_cnode->user_data<OperatorInfo>()->name());
|
|
}
|
|
if (target_without_duplicate.size() <= 1) {
|
|
continue;
|
|
}
|
|
|
|
// Here, it is sure that this Parameter (RefKey) is being used by multiple Operators.
|
|
OperatorInfoPtr tmp_identity_ptr;
|
|
bool new_identity = false;
|
|
std::string tmp_identity_name;
|
|
auto returned_identity = entire_costgraph->FindTmpIdentityByParameterName(parameter_name);
|
|
if (returned_identity != nullptr) {
|
|
// In this case, the TmpIdentityInfo instance has already been created
|
|
new_identity = false;
|
|
tmp_identity_ptr = returned_identity;
|
|
tmp_identity_name = tmp_identity_ptr->name();
|
|
} else {
|
|
// In the case, the TmpIdentityInfo instance has NOT been created. Thus, a new one is created.
|
|
new_identity = true;
|
|
// 1) extract input shape from this Parameter
|
|
MS_EXCEPTION_IF_NULL(target_parameter);
|
|
AbstractBasePtr abstract = target_parameter->abstract();
|
|
if (abstract == nullptr) {
|
|
MS_LOG(EXCEPTION) << "Failure: abstract is nullptr";
|
|
}
|
|
auto input_shape = dyn_cast<abstract::Shape>(abstract->GetShapeTrack());
|
|
if (input_shape == nullptr) {
|
|
MS_LOG(EXCEPTION) << "Failure: input_shape is nullptr";
|
|
}
|
|
std::vector<int> shape_int = input_shape->shape();
|
|
Shape shape;
|
|
(void)std::transform(shape_int.begin(), shape_int.end(), std::back_inserter(shape),
|
|
[](int sub_shape) { return static_cast<int64_t>(sub_shape); });
|
|
Shapes inputs_shape = {shape};
|
|
Shapes outputs_shape = {shape};
|
|
// 2) init the attr
|
|
std::unordered_map<std::string, ValuePtr> attr = {};
|
|
|
|
// Create the TmpIdentity instance
|
|
tmp_identity_ptr = std::make_shared<TmpIdentityInfo>(inputs_shape, outputs_shape, attr);
|
|
tmp_identity_ptr->set_name(tmp_identity_ptr->name() + std::to_string(TOTAL_OPS));
|
|
TOTAL_OPS++;
|
|
tmp_identity_ptr->set_refkey_parameter_name(parameter_name);
|
|
// Set the parameter and type lengths for inputs and outputs
|
|
std::vector<bool> is_parameter;
|
|
auto casted_target_parameter = target_parameter->cast<ParameterPtr>();
|
|
MS_EXCEPTION_IF_NULL(casted_target_parameter);
|
|
is_parameter.push_back(ParameterRequireGrad(casted_target_parameter));
|
|
if (tmp_identity_ptr->set_is_parameter(is_parameter) != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Setting parameter for TmpIdentityInfo failed";
|
|
}
|
|
auto node_type = target_parameter->Type();
|
|
if (node_type->isa<mindspore::TensorType>()) {
|
|
auto input_element_type = node_type->cast<mindspore::TensorTypePtr>()->element();
|
|
std::vector<size_t> type_length = {GetLengthOfDataType(input_element_type)};
|
|
if (tmp_identity_ptr->SetInputAndOutputTypeLength(type_length, type_length) != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Setting input and output type length for TmpIdentityInfo failed";
|
|
}
|
|
} else {
|
|
MS_LOG(EXCEPTION) << "Unknown type: " << node_type->type_name();
|
|
}
|
|
|
|
// Generate strategies for this TmpIdentityInfo instance;
|
|
if (tmp_identity_ptr->GenerateStrategies(0) != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Strategy search for Operator failed : " << tmp_identity_ptr->name();
|
|
}
|
|
}
|
|
// A flag recording whether new edges have been created or not
|
|
bool add_identity_edge = false;
|
|
|
|
// Create edges between this TmpIdentityInfo instance and subsequent Operator instances
|
|
for (auto &target : target_set) {
|
|
auto target_cnode = target.first->cast<CNodePtr>();
|
|
auto prim = GetValueNode<PrimitivePtr>(target_cnode->input(0));
|
|
auto input_index = target.second;
|
|
auto target_op_info = target_cnode->user_data<OperatorInfo>();
|
|
|
|
std::string edge_name = std::string(IDENTITY_INFO) + OPERATOR_TO_OPERATOR_CONNECTOR + target_op_info->name();
|
|
// If the edge between these two operators already has been added, then the edge will not be added again.
|
|
if (entire_costgraph->IsEdgeInCostGraph(edge_name, 0, IntToSize(input_index - 1))) {
|
|
continue;
|
|
}
|
|
std::shared_ptr<Edge> edge_ptr =
|
|
std::make_shared<Edge>(edge_name, tmp_identity_ptr, target_op_info, 0, input_index - 1, false, true);
|
|
|
|
if (edge_ptr->InitEdgeCost() != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Edge cost initialization failed";
|
|
}
|
|
target_op_info->AddPrevEdge(edge_ptr);
|
|
tmp_identity_ptr->AddSuccEdge(edge_ptr);
|
|
entire_costgraph->AddEdge(tmp_identity_ptr, target_op_info, edge_ptr);
|
|
MS_LOG(INFO) << "Successfully adding the edge between " << tmp_identity_ptr->name() << " and "
|
|
<< target_op_info->name();
|
|
add_identity_edge = true;
|
|
}
|
|
if (new_identity && add_identity_edge) {
|
|
// Add the TmpIdentityInfo to CostGraph if BOTH two conditions are satisfied
|
|
entire_costgraph->AddOperator(tmp_identity_ptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool FindReshape(const CNodePtr &cnode) {
|
|
if ((cnode == nullptr) || !IsValueNode<Primitive>(cnode->input(0))) {
|
|
return false;
|
|
}
|
|
if (!IsParallelCareNode(cnode) || !cnode->has_user_data<OperatorInfo>()) {
|
|
return false;
|
|
}
|
|
ValueNodePtr prim_anf_node = cnode->input(0)->cast<ValueNodePtr>();
|
|
PrimitivePtr prim = GetValueNode<PrimitivePtr>(prim_anf_node);
|
|
MS_EXCEPTION_IF_NULL(prim);
|
|
return (prim->name() == RESHAPE);
|
|
}
|
|
|
|
// find previous node, then obtain its strategy_cost_ vector to get its layout vector.
|
|
bool FindPreNodeStraCosts(const AnfNodePtr &node, OperatorInfoPtr *pre_operator_info, int32_t *out_index) {
|
|
// if previous node is a parameter, handle it in the outsize.
|
|
if (node->isa<Parameter>()) {
|
|
return false;
|
|
}
|
|
if (!node->isa<CNode>()) {
|
|
return false;
|
|
}
|
|
CNodePtr cnode = node->cast<CNodePtr>();
|
|
if (!IsValueNode<Primitive>(cnode->input(0))) {
|
|
return false;
|
|
}
|
|
auto node_op_info = cnode->user_data<OperatorInfo>();
|
|
if (IsParallelCareNode(cnode) && (node_op_info != nullptr)) {
|
|
*pre_operator_info = node_op_info;
|
|
*out_index = 0;
|
|
return true;
|
|
}
|
|
ValueNodePtr prim_anf_node = cnode->input(0)->cast<ValueNodePtr>();
|
|
PrimitivePtr prim = prim_anf_node->value()->cast<PrimitivePtr>();
|
|
if (prim->name() == TUPLE_GETITEM) {
|
|
*out_index = GetTupleGetItemIndex(cnode);
|
|
// find tuple_get_item's previous node
|
|
auto pre_node = cnode->input(1);
|
|
if (!pre_node->isa<CNode>()) {
|
|
MS_LOG(EXCEPTION) << "tuple get item's second input is not a cnode";
|
|
}
|
|
CNodePtr pre_cnode = pre_node->cast<CNodePtr>();
|
|
auto pre_op_info = pre_cnode->user_data<OperatorInfo>();
|
|
if (IsParallelCareNode(pre_cnode) && (pre_op_info != nullptr)) {
|
|
*pre_operator_info = pre_op_info;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
for (size_t index = 0; index < cnode->inputs().size(); ++index) {
|
|
if (prim->name() == DEPEND && index != 1) {
|
|
continue;
|
|
}
|
|
if (!FindPreNodeStraCosts(cnode->inputs()[index], pre_operator_info, out_index)) {
|
|
continue;
|
|
}
|
|
return true;
|
|
}
|
|
MS_LOG(WARNING) << "FindPreNodeStraCosts failed, if reshape is not the first primitive, there must be some error";
|
|
return false;
|
|
}
|
|
|
|
// find next node, then obtain its strategy_cost_ vector to get its layout vector.
|
|
// if reshape's output connect to several primitive, return the first layout found
|
|
bool FindNextNodeStraCosts(const CNodePtr &cnode, OperatorInfoPtr *next_operator_info, int32_t *in_index) {
|
|
MS_EXCEPTION_IF_NULL(cnode);
|
|
MS_EXCEPTION_IF_NULL(cnode->func_graph());
|
|
FuncGraphManagerPtr manager = cnode->func_graph()->manager();
|
|
MS_EXCEPTION_IF_NULL(manager);
|
|
AnfNodeIndexSet node_set = manager->node_users()[cnode];
|
|
for (auto &node_pair : node_set) {
|
|
CNodePtr use_apply = node_pair.first->cast<CNodePtr>();
|
|
if (use_apply == nullptr || !IsValueNode<Primitive>(use_apply->input(0))) {
|
|
continue;
|
|
}
|
|
ValueNodePtr prim_anf_node = use_apply->input(0)->cast<ValueNodePtr>();
|
|
MS_EXCEPTION_IF_NULL(prim_anf_node);
|
|
PrimitivePtr node_prim = prim_anf_node->value()->cast<PrimitivePtr>();
|
|
MS_EXCEPTION_IF_NULL(node_prim);
|
|
MS_LOG(INFO) << "FindNextLayout prim " << node_prim->name();
|
|
if (node_prim->name() == DEPEND && node_pair.second != 1) {
|
|
continue;
|
|
}
|
|
auto op_info = use_apply->user_data<OperatorInfo>();
|
|
if (IsParallelCareNode(use_apply) && (op_info != nullptr)) {
|
|
MS_LOG(INFO) << "FindNextNodeStraCosts success prim " << node_prim->name();
|
|
*next_operator_info = op_info;
|
|
*in_index = node_pair.second - 1;
|
|
return true;
|
|
}
|
|
MS_LOG(DEBUG) << "FindNextNodeStraCosts failed prim " << node_prim->name() << " " << IsParallelCareNode(use_apply)
|
|
<< " " << (op_info != nullptr);
|
|
|
|
if (FindNextNodeStraCosts(use_apply, next_operator_info, in_index)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ReshapeCostCompute(const std::vector<AnfNodePtr> &all_nodes) {
|
|
for (auto node : all_nodes) {
|
|
auto cnode = node->cast<CNodePtr>();
|
|
if (!FindReshape(cnode)) {
|
|
continue;
|
|
}
|
|
MS_ASSERT(cnode->inputs().size() == 3);
|
|
// get previous node's strategy_cost_
|
|
auto pre_node = cnode->input(1);
|
|
int32_t out_index = 0;
|
|
OperatorInfoPtr pre_operator_info;
|
|
std::vector<std::shared_ptr<StrategyWithCost>> pre_stra_costs;
|
|
auto operator_info = cnode->user_data<OperatorInfo>();
|
|
if (pre_node->isa<Parameter>()) {
|
|
auto reshape_info = std::dynamic_pointer_cast<ReshapeInfo>(operator_info);
|
|
reshape_info->SetCostForReshapeWithParameter();
|
|
pre_operator_info = reshape_info;
|
|
pre_stra_costs = reshape_info->strategy_cost();
|
|
} else {
|
|
if (!FindPreNodeStraCosts(pre_node, &pre_operator_info, &out_index)) {
|
|
MS_LOG(EXCEPTION) << "FindPreNodeStraCosts for reshape failed";
|
|
}
|
|
pre_stra_costs = pre_operator_info->strategy_cost();
|
|
}
|
|
// get next node's strategy_cost_
|
|
int32_t in_index = 0;
|
|
OperatorInfoPtr next_operator_info;
|
|
std::vector<std::shared_ptr<StrategyWithCost>> next_stra_costs;
|
|
bool find_next_node = FindNextNodeStraCosts(cnode, &next_operator_info, &in_index);
|
|
if (!find_next_node) {
|
|
MS_LOG(INFO) << "FindNextNodeStraCosts for reshape failed";
|
|
}
|
|
// set input_layout and output_layout for reshape.
|
|
// init reshape and set cost for each input_layout and output_layout.
|
|
auto reshape_info = std::dynamic_pointer_cast<ReshapeInfo>(operator_info);
|
|
reshape_info->set_pre_operator_name(pre_operator_info->name());
|
|
reshape_info->set_pre_operator_index(out_index);
|
|
if (find_next_node) {
|
|
next_stra_costs = next_operator_info->strategy_cost();
|
|
reshape_info->set_next_operator_name(next_operator_info->name());
|
|
reshape_info->set_next_operator_index(in_index);
|
|
}
|
|
bool is_prev_param = pre_node->isa<Parameter>();
|
|
if (reshape_info->GenetateStrategyCosts(pre_stra_costs, next_stra_costs, out_index, in_index, is_prev_param) !=
|
|
SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "reshape genetate strategy_costs failed!";
|
|
}
|
|
}
|
|
}
|
|
|
|
Status ParallelStrategySearch(const std::vector<AnfNodePtr> &all_nodes, const FuncGraphPtr &root) {
|
|
// There are 4 meta-steps to determine the parallelization strategy for the ANF graph.
|
|
// Step 1: Traverse the ANF graph, and create NODEs for costgraph:
|
|
// create the OperatorInfo object for each primitive, and enumerate the parallelization strategies
|
|
// for each OperatorInfo;
|
|
// Step 1.1: Deal with 'Reshape':
|
|
// For 'Reshape', it takes its previous operator's layout as its input layout, and takes its next operator's
|
|
// layout as its output layout.
|
|
// Step 2: Traverse the ANF graph, and create EDGES for costgraph:
|
|
// create the Edge object for each pair of OperatorInfo, and enumerate the parallelization strategies
|
|
// for each edge, based on the strategies of two OperatorInfos;
|
|
// Step 3: Augment the costgraph:
|
|
// taking care for the case of a single Parameter being used by multiple operators. Create a TmpIdentity
|
|
// operator for this Parameter, and add an edge for the use of this Parameter by each
|
|
// subsequent operator;
|
|
// Step 3.1: Calculate memory usage:
|
|
// note the memory usage calculation is different in training phase and inference phase.
|
|
// Step 4: Run the Dynamic Programming algorithm:
|
|
// in this process, cost is calculated based on not only the operators, but also the edges. Here, the edge
|
|
// cost is caused by the redistribution of a operator's output tensor layout to the next operator's input
|
|
// tensor layout. Note that there may be several connected components in the costgraph, and the DP algorithm
|
|
// runs on each of them.
|
|
//
|
|
// OUTPUT: the determined strategy for each operator.
|
|
|
|
// Step 1
|
|
if (CostModelContext::GetInstance()->is_multi_subgraphs()) {
|
|
if (ConstructCostGraphNodesByUniqueIdTC(all_nodes, root) == SUCCESS) {
|
|
MS_LOG(INFO) << "Constructing nodes for cost graph succeeded. There are "
|
|
<< entire_costgraph->GetOperators().size() << " operators.";
|
|
} else {
|
|
MS_LOG(EXCEPTION) << "Constructing nodes for cost graph failed.";
|
|
}
|
|
} else {
|
|
if (ConstructCostGraphNodesByUniqueId(all_nodes, root) == SUCCESS) {
|
|
MS_LOG(INFO) << "Constructing nodes for cost graph succeeded. There are "
|
|
<< entire_costgraph->GetOperators().size() << " operators.";
|
|
} else {
|
|
MS_LOG(EXCEPTION) << "Constructing nodes for cost graph failed.";
|
|
}
|
|
}
|
|
// Step 1.1
|
|
ReshapeCostCompute(all_nodes);
|
|
// Step 2
|
|
ConstructCostGraphEdges(all_nodes);
|
|
MS_LOG(INFO) << "Constructing edges for cost graph succeeded. There are " << entire_costgraph->GetOperators().size()
|
|
<< " operators, and " << entire_costgraph->GetNumEdges() << " edges.";
|
|
|
|
// Step 3: Augment the costgraph.
|
|
AugmentCostGraph(all_nodes);
|
|
MS_LOG(INFO) << "After the augmenting procedure, there are " << entire_costgraph->GetOperators().size()
|
|
<< " operators, and " << entire_costgraph->GetNumEdges() << " edges.";
|
|
|
|
// Step 3.1: Calculate the memory usage
|
|
if (entire_costgraph->CalculateMemoryCost() != SUCCESS) {
|
|
MS_LOG(EXCEPTION) << "Calculating memory cost failed.";
|
|
}
|
|
|
|
// Step 4: run DP algorithm on the costgraph.
|
|
if (GetStrategy(entire_costgraph) != SUCCESS) {
|
|
MS_LOG(ERROR) << "Strategy search for cost-graph fails";
|
|
return FAILED;
|
|
}
|
|
MS_LOG(INFO) << "Searching strategy succeeded.";
|
|
|
|
if (entire_costgraph->InitSelectedStrategy() == SUCCESS) {
|
|
MS_LOG(INFO) << "Init selected strategy succeeded.";
|
|
} else {
|
|
MS_LOG(EXCEPTION) << "Init selected strategy failed.";
|
|
}
|
|
|
|
// print the selected strategy
|
|
for (auto &op : entire_costgraph->GetOperators()) {
|
|
StrategyPtr s_strategy = op->selected_strategy();
|
|
MS_LOG(INFO) << op->name() << " : The strategy is:";
|
|
PrintStrategy(s_strategy);
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
std::vector<std::vector<std::string>> RecInputTensorNames(const std::map<std::string, std::string>::iterator &it,
|
|
std::vector<std::vector<std::string>> input_tensor_names) {
|
|
for (size_t j = 0; j < input_tensor_names.size(); j++) {
|
|
for (size_t k = 0; k < input_tensor_names[j].size(); k++) {
|
|
if (it->first == input_tensor_names[j][k]) {
|
|
input_tensor_names[j][k] = it->second;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return input_tensor_names;
|
|
}
|
|
|
|
CNodePtr GetInternalOperatorInfo(const CNodePtr &cnode, const ValueNodePtr &prim_anf_node) {
|
|
PrimitivePtr prim = GetValueNode<PrimitivePtr>(prim_anf_node);
|
|
if (prim->name() == TUPLE_GETITEM || prim->name() == DEPEND) {
|
|
auto prev_cnode = cnode->input(1)->cast<CNodePtr>();
|
|
if (prev_cnode == nullptr || !IsValueNode<Primitive>(prev_cnode->input(0))) {
|
|
return nullptr;
|
|
}
|
|
auto prev_prim = prev_cnode->input(0)->cast<ValueNodePtr>()->value()->cast<PrimitivePtr>();
|
|
while (prev_prim->name() == TUPLE_GETITEM || prev_prim->name() == DEPEND) {
|
|
prev_cnode = prev_cnode->input(1)->cast<CNodePtr>();
|
|
if (prev_cnode == nullptr || !IsValueNode<Primitive>(prev_cnode->input(0))) {
|
|
return nullptr;
|
|
}
|
|
prev_prim = prev_cnode->input(0)->cast<ValueNodePtr>()->value()->cast<PrimitivePtr>();
|
|
}
|
|
return prev_cnode;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void ModifyInputsTensorNameListIfOperatorInfoCreated(const std::string &name, const std::string &uniqueid) {
|
|
size_t iter_ops = 0;
|
|
for (auto op : entire_costgraph->GetOperators()) {
|
|
if (op->name() == name) {
|
|
break;
|
|
}
|
|
iter_ops = iter_ops + 1;
|
|
}
|
|
|
|
std::vector<std::vector<std::string>> input_tensor_names = entire_costgraph->get_inputs_tensor_name_list();
|
|
for (size_t i = 0; i < input_tensor_names.size(); i++) {
|
|
for (size_t j = 0; j < input_tensor_names[i].size(); j++) {
|
|
if (input_tensor_names[i][j] == uniqueid) {
|
|
input_tensor_names[i][j] = input_tensor_names[iter_ops][0];
|
|
}
|
|
}
|
|
}
|
|
|
|
entire_costgraph->set_inputs_tensor_name_list(input_tensor_names);
|
|
}
|
|
|
|
Status ParallelStrategyRecSearch(const std::vector<AnfNodePtr> &all_nodes, const FuncGraphPtr &root) {
|
|
if (CostModelContext::GetInstance()->is_multi_subgraphs()) {
|
|
if (ConstructCostGraphNodesByUniqueIdTC(all_nodes, root) == SUCCESS) {
|
|
MS_LOG(INFO) << "Constructing nodes for cost graph succeeded. There are "
|
|
<< entire_costgraph->GetOperators().size() << " operators.";
|
|
} else {
|
|
MS_LOG(EXCEPTION) << "Constructing nodes for cost graph failed.";
|
|
}
|
|
} else {
|
|
if (ConstructCostGraphNodesByUniqueId(all_nodes, root) == SUCCESS) {
|
|
MS_LOG(INFO) << "Constructing nodes for cost graph succeeded. There are "
|
|
<< entire_costgraph->GetOperators().size() << " operators.";
|
|
} else {
|
|
MS_LOG(EXCEPTION) << "Constructing nodes for cost graph failed.";
|
|
}
|
|
}
|
|
ReshapeCostCompute(all_nodes);
|
|
|
|
auto ops = entire_costgraph->GetOperators();
|
|
std::vector<std::vector<std::string>> input_tensor_names = entire_costgraph->get_inputs_tensor_name_list();
|
|
auto tuple_getitem_list = entire_costgraph->get_tuple_getitem_list();
|
|
for (auto it = tuple_getitem_list.begin(); it != tuple_getitem_list.end();) {
|
|
input_tensor_names = RecInputTensorNames(it++, input_tensor_names);
|
|
}
|
|
std::shared_ptr<Graph> graph = ParseGraph(ops, input_tensor_names);
|
|
|
|
std::shared_ptr<std::vector<std::vector<size_t>>> eli_list(new std::vector<std::vector<size_t>>);
|
|
std::shared_ptr<std::vector<size_t>> index_list(new std::vector<size_t>);
|
|
graph = EliminateGraph(graph, eli_list, index_list);
|
|
|
|
size_t num_device = g_device_manager->DeviceNum();
|
|
double device_memory = entire_costgraph->GetDeviceMemory();
|
|
if (PartitionForAllDevices(num_device, device_memory, graph) == SUCCESS) {
|
|
MS_LOG(INFO) << "Partition Success With " << num_device << " devices.";
|
|
} else {
|
|
MS_LOG(ERROR) << "PartitionForAllDevices failed.";
|
|
return FAILED;
|
|
}
|
|
|
|
GenerateStrategy(graph, ops, eli_list, input_tensor_names, index_list);
|
|
|
|
if (entire_costgraph->InitSelectedStrategy() == SUCCESS) {
|
|
MS_LOG(INFO) << "Init selected strategy succeeded.";
|
|
} else {
|
|
MS_LOG(ERROR) << "Init selected strategy failed.";
|
|
return FAILED;
|
|
}
|
|
|
|
// print the selected strategy
|
|
for (auto &op : entire_costgraph->GetOperators()) {
|
|
StrategyPtr s_strategy = op->selected_strategy();
|
|
MS_LOG(INFO) << op->name() << " : The strategy is:";
|
|
PrintStrategy(s_strategy);
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
} // namespace parallel
|
|
} // namespace mindspore
|