You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
6.2 KiB
142 lines
6.2 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""train resnet."""
|
|
import os
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from mindspore import context
|
|
from mindspore import Tensor
|
|
from mindspore.common import set_seed
|
|
from mindspore.context import ParallelMode
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
|
from mindspore.communication.management import init, get_rank, get_group_size
|
|
|
|
from src.model_thor import Model_Thor as Model
|
|
from src.resnet_thor import resnet50
|
|
from src.dataset import create_dataset
|
|
from src.crossentropy import CrossEntropy
|
|
|
|
parser = argparse.ArgumentParser(description='Image classification')
|
|
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
|
|
parser.add_argument('--device_num', type=int, default=1, help='Device num')
|
|
args_opt = parser.parse_args()
|
|
|
|
if args_opt.device_target == "Ascend":
|
|
from src.thor import THOR
|
|
from src.config import config
|
|
else:
|
|
from src.thor import THOR_GPU as THOR
|
|
from src.config import config_gpu as config
|
|
|
|
set_seed(1)
|
|
|
|
|
|
def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch, decay_epochs=100):
|
|
"""get_model_lr"""
|
|
lr_each_step = []
|
|
total_steps = steps_per_epoch * total_epochs
|
|
for i in range(total_steps):
|
|
epoch = (i + 1) / steps_per_epoch
|
|
base = (1.0 - float(epoch) / total_epochs) ** decay
|
|
lr_local = lr_init * base
|
|
if epoch >= decay_epochs:
|
|
lr_local = lr_local * 0.5
|
|
if epoch >= decay_epochs + 1:
|
|
lr_local = lr_local * 0.5
|
|
lr_each_step.append(lr_local)
|
|
current_step = global_step
|
|
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
|
learning_rate = lr_each_step[current_step:]
|
|
return learning_rate
|
|
|
|
|
|
def get_model_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch):
|
|
"""get_model_damping"""
|
|
damping_each_step = []
|
|
total_steps = steps_per_epoch * total_epochs
|
|
for step in range(total_steps):
|
|
epoch = (step + 1) / steps_per_epoch
|
|
damping_here = damping_init * (decay_rate ** (epoch / 10))
|
|
damping_each_step.append(damping_here)
|
|
current_step = global_step
|
|
damping_each_step = np.array(damping_each_step).astype(np.float32)
|
|
damping_now = damping_each_step[current_step:]
|
|
return damping_now
|
|
|
|
|
|
if __name__ == '__main__':
|
|
target = args_opt.device_target
|
|
ckpt_save_dir = config.save_checkpoint_path
|
|
|
|
# init context
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
|
|
|
|
if args_opt.run_distribute:
|
|
# Ascend target
|
|
if target == "Ascend":
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
|
|
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
gradients_mean=True, all_reduce_fusion_config=[107])
|
|
init()
|
|
# GPU target
|
|
else:
|
|
init()
|
|
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
gradients_mean=True, all_reduce_fusion_config=[107])
|
|
ckpt_save_dir = ckpt_save_dir + "ckpt_" + str(get_rank()) + "/"
|
|
|
|
# create dataset
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
|
|
batch_size=config.batch_size, target=target)
|
|
|
|
# define net
|
|
step_size = dataset.get_dataset_size()
|
|
damping = get_model_damping(0, config.damping_init, config.damping_decay, 70, step_size)
|
|
lr = get_model_lr(0, config.lr_init, config.lr_decay, config.lr_end_epoch, step_size, decay_epochs=39)
|
|
net = resnet50(class_num=config.class_num, damping=damping, loss_scale=config.loss_scale,
|
|
frequency=config.frequency, batch_size=config.batch_size)
|
|
|
|
# define loss, model
|
|
if not config.use_label_smooth:
|
|
config.label_smooth_factor = 0.0
|
|
loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
|
opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), config.momentum,
|
|
filter(lambda x: 'matrix_A' in x.name, net.get_parameters()),
|
|
filter(lambda x: 'matrix_G' in x.name, net.get_parameters()),
|
|
filter(lambda x: 'A_inv_max' in x.name, net.get_parameters()),
|
|
filter(lambda x: 'G_inv_max' in x.name, net.get_parameters()),
|
|
config.weight_decay, config.loss_scale)
|
|
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
|
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', loss_scale_manager=loss_scale,
|
|
keep_batchnorm_fp32=False, metrics={'acc'}, frequency=config.frequency)
|
|
|
|
# define callbacks
|
|
time_cb = TimeMonitor(data_size=step_size)
|
|
loss_cb = LossMonitor()
|
|
cb = [time_cb, loss_cb]
|
|
if config.save_checkpoint:
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
|
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
|
|
cb += [ckpt_cb]
|
|
|
|
# train model
|
|
model.train(config.epoch_size, dataset, callbacks=cb)
|