You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
2.8 KiB
92 lines
2.8 KiB
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
|
|
# Data for CIFAR and MNIST are not part of build tree
|
|
# They need to be downloaded directly
|
|
# prep_data.py can be executed or code below
|
|
# import sys
|
|
# sys.path.insert(0,"../../data")
|
|
# import prep_data
|
|
# prep_data.download_all_for_test("../../data")
|
|
DATA_DIR_10 = "../data/dataset/testCifar10Data"
|
|
DATA_DIR_100 = "../data/dataset/testCifar100Data"
|
|
|
|
|
|
def load_cifar(path):
|
|
raw = np.empty(0, dtype=np.uint8)
|
|
for file_name in os.listdir(path):
|
|
if file_name.endswith(".bin"):
|
|
with open(os.path.join(path, file_name), mode='rb') as file:
|
|
raw = np.append(raw, np.fromfile(file, dtype=np.uint8), axis=0)
|
|
raw = raw.reshape(-1, 3073)
|
|
labels = raw[:, 0]
|
|
images = raw[:, 1:]
|
|
images = images.reshape(-1, 3, 32, 32)
|
|
images = images.transpose(0, 2, 3, 1)
|
|
return images, labels
|
|
|
|
|
|
def test_case_dataset_cifar10():
|
|
"""
|
|
dataset parameter
|
|
"""
|
|
logger.info("Test dataset parameter")
|
|
# apply dataset operations
|
|
data1 = ds.Cifar10Dataset(DATA_DIR_10, 100)
|
|
|
|
num_iter = 0
|
|
for _ in data1.create_dict_iterator():
|
|
# in this example, each dictionary has keys "image" and "label"
|
|
num_iter += 1
|
|
assert num_iter == 100
|
|
|
|
|
|
def test_case_dataset_cifar100():
|
|
"""
|
|
dataset parameter
|
|
"""
|
|
logger.info("Test dataset parameter")
|
|
# apply dataset operations
|
|
data1 = ds.Cifar100Dataset(DATA_DIR_100, 100)
|
|
|
|
num_iter = 0
|
|
for _ in data1.create_dict_iterator():
|
|
# in this example, each dictionary has keys "image" and "label"
|
|
num_iter += 1
|
|
assert num_iter == 100
|
|
|
|
|
|
def test_reading_cifar10():
|
|
"""
|
|
Validate CIFAR10 image readings
|
|
"""
|
|
data1 = ds.Cifar10Dataset(DATA_DIR_10, 100, shuffle=False)
|
|
images, labels = load_cifar(DATA_DIR_10)
|
|
for i, d in enumerate(data1.create_dict_iterator()):
|
|
np.testing.assert_array_equal(d["image"], images[i])
|
|
np.testing.assert_array_equal(d["label"], labels[i])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_case_dataset_cifar10()
|
|
test_case_dataset_cifar100()
|
|
test_reading_cifar10()
|