You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
666 lines
21 KiB
666 lines
21 KiB
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.common.dtype as mstype
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
|
|
|
|
# Generate 1d int numpy array from 0 - 63
|
|
def generator_1d():
|
|
for i in range(64):
|
|
yield (np.array([i]),)
|
|
|
|
|
|
def test_case_0():
|
|
"""
|
|
Test 1D Generator
|
|
"""
|
|
logger.info("Test 1D Generator : 0 - 63")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_1d, ["data"])
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([i])
|
|
assert np.array_equal(item["data"], golden)
|
|
i = i + 1
|
|
|
|
|
|
# Generate md int numpy array from [[0, 1], [2, 3]] to [[63, 64], [65, 66]]
|
|
def generator_md():
|
|
for i in range(64):
|
|
yield (np.array([[i, i + 1], [i + 2, i + 3]]),)
|
|
|
|
|
|
def test_case_1():
|
|
"""
|
|
Test MD Generator
|
|
"""
|
|
logger.info("Test MD Generator : 0 - 63, with shape [2, 2]")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_md, ["data"])
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([[i, i + 1], [i + 2, i + 3]])
|
|
assert np.array_equal(item["data"], golden)
|
|
i = i + 1
|
|
|
|
|
|
# Generate two columns, the first column is from Generator1D, the second column is from GeneratorMD
|
|
def generator_mc(maxid=64):
|
|
for i in range(maxid):
|
|
yield (np.array([i]), np.array([[i, i + 1], [i + 2, i + 3]]))
|
|
|
|
|
|
def test_case_2():
|
|
"""
|
|
Test multi column generator
|
|
"""
|
|
logger.info("Test multi column generator")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_mc, ["col0", "col1"])
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([i])
|
|
assert np.array_equal(item["col0"], golden)
|
|
golden = np.array([[i, i + 1], [i + 2, i + 3]])
|
|
assert np.array_equal(item["col1"], golden)
|
|
i = i + 1
|
|
|
|
|
|
def test_case_3():
|
|
"""
|
|
Test 1D Generator + repeat(4)
|
|
"""
|
|
logger.info("Test 1D Generator : 0 - 63 + Repeat(4)")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_1d, ["data"])
|
|
|
|
data1 = data1.repeat(4)
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([i])
|
|
assert np.array_equal(item["data"], golden)
|
|
i = i + 1
|
|
if i == 64:
|
|
i = 0
|
|
|
|
|
|
def test_case_4():
|
|
"""
|
|
Test fixed size 1D Generator + batch
|
|
"""
|
|
logger.info("Test 1D Generator : 0 - 63 + batch(4)")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_1d, ["data"])
|
|
|
|
data1 = data1.batch(4)
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([[i], [i + 1], [i + 2], [i + 3]])
|
|
assert np.array_equal(item["data"], golden)
|
|
i = i + 4
|
|
|
|
|
|
def generator_with_type(t):
|
|
for i in range(64):
|
|
yield (np.array([i], dtype=t),)
|
|
|
|
|
|
def type_tester(t):
|
|
logger.info("Test with Type {}".format(t.__name__))
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset((lambda: generator_with_type(t)), ["data"])
|
|
|
|
data1 = data1.batch(4)
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([[i], [i + 1], [i + 2], [i + 3]], dtype=t)
|
|
assert np.array_equal(item["data"], golden)
|
|
i = i + 4
|
|
|
|
|
|
def test_case_5():
|
|
"""
|
|
Test 1D Generator on different data type
|
|
"""
|
|
logger.info("Test 1D Generator on all data types")
|
|
|
|
types = [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float32, np.float64]
|
|
|
|
for t in types:
|
|
type_tester(t)
|
|
|
|
|
|
def type_tester_with_type_check(t, c):
|
|
logger.info("Test with Type {}".format(t.__name__))
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset((lambda: generator_with_type(t)), ["data"], column_types=[c])
|
|
|
|
data1 = data1.batch(4)
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([[i], [i + 1], [i + 2], [i + 3]], dtype=t)
|
|
assert np.array_equal(item["data"], golden)
|
|
i = i + 4
|
|
|
|
|
|
def test_case_6():
|
|
"""
|
|
Test 1D Generator on different data type with type check
|
|
"""
|
|
logger.info("Test 1D Generator on all data types with type check")
|
|
|
|
np_types = [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float32,
|
|
np.float64]
|
|
de_types = [mstype.int8, mstype.int16, mstype.int32, mstype.int64, mstype.uint8, mstype.uint16, mstype.uint32,
|
|
mstype.uint64, mstype.float32, mstype.float64]
|
|
|
|
for i, _ in enumerate(np_types):
|
|
type_tester_with_type_check(np_types[i], de_types[i])
|
|
|
|
|
|
def generator_with_type_2c(t):
|
|
for i in range(64):
|
|
yield (np.array([i], dtype=t), np.array([i], dtype=t))
|
|
|
|
|
|
def type_tester_with_type_check_2c(t, c):
|
|
logger.info("Test with Type {}".format(t.__name__))
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset((lambda: generator_with_type_2c(t)), ["data0", "data1"], column_types=c)
|
|
|
|
data1 = data1.batch(4)
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([[i], [i + 1], [i + 2], [i + 3]], dtype=t)
|
|
assert np.array_equal(item["data0"], golden)
|
|
i = i + 4
|
|
|
|
|
|
def test_case_7():
|
|
"""
|
|
Test 2 column Generator on different data type with type check
|
|
"""
|
|
logger.info("Test 2 column Generator on all data types with type check")
|
|
|
|
np_types = [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float32,
|
|
np.float64]
|
|
de_types = [mstype.int8, mstype.int16, mstype.int32, mstype.int64, mstype.uint8, mstype.uint16, mstype.uint32,
|
|
mstype.uint64, mstype.float32, mstype.float64]
|
|
|
|
for i, _ in enumerate(np_types):
|
|
type_tester_with_type_check_2c(np_types[i], [None, de_types[i]])
|
|
|
|
|
|
def test_case_8():
|
|
"""
|
|
Test multi column generator with few mapops
|
|
"""
|
|
logger.info("Test multi column generator with mapops to check the order too")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_mc(2048), ["col0", "col1"])
|
|
data1 = data1.map(input_columns="col0", output_columns="out0", operations=(lambda x: x * 3),
|
|
num_parallel_workers=2)
|
|
data1 = data1.map(input_columns="col1", output_columns=["out1", "out2"], operations=(lambda x: (x * 7, x)),
|
|
num_parallel_workers=2, columns_order=["out0", "out1", "out2"])
|
|
data1 = data1.map(input_columns="out2", output_columns="out2", operations=(lambda x: x + 1),
|
|
num_parallel_workers=2)
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([i * 3])
|
|
assert np.array_equal(item["out0"], golden)
|
|
golden = np.array([[i * 7, (i + 1) * 7], [(i + 2) * 7, (i + 3) * 7]])
|
|
assert np.array_equal(item["out1"], golden)
|
|
golden = np.array([[i + 1, i + 2], [i + 3, i + 4]])
|
|
assert np.array_equal(item["out2"], golden)
|
|
i = i + 1
|
|
|
|
|
|
def test_case_9():
|
|
"""
|
|
Test map column order when len(input_columns) == len(output_columns).
|
|
"""
|
|
logger.info("Test map column order when len(input_columns) == len(output_columns).")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_mc(2048), ["image", "label"])
|
|
data2 = ds.GeneratorDataset(generator_mc(2048), ["label", "image"])
|
|
data1 = data1.map(input_columns="label", operations=(lambda x: x * 3),
|
|
num_parallel_workers=4)
|
|
data2 = data2.map(input_columns="label", operations=(lambda x: x * 3),
|
|
num_parallel_workers=4)
|
|
|
|
# Expected column order is not changed.
|
|
# data1 = data[0] is "image" and data[1] is "label"
|
|
# data2 = data[0] is "label" and data[1] is "image"
|
|
i = 0
|
|
for data1, data2 in zip(data1, data2): # each data is a dictionary
|
|
golden = np.array([i])
|
|
assert np.array_equal(data1[0], golden)
|
|
golden = np.array([[i * 3, (i + 1) * 3], [(i + 2) * 3, (i + 3) * 3]])
|
|
assert np.array_equal(data1[1], golden)
|
|
|
|
golden = np.array([i * 3])
|
|
assert np.array_equal(data2[0], golden)
|
|
golden = np.array([[i, i + 1], [i + 2, i + 3]])
|
|
assert np.array_equal(data2[1], golden)
|
|
i = i + 1
|
|
|
|
|
|
def test_case_10():
|
|
"""
|
|
Test map column order when len(input_columns) != len(output_columns).
|
|
"""
|
|
logger.info("Test map column order when len(input_columns) != len(output_columns).")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_mc(2048), ["col0", "col1"])
|
|
data1 = data1.map(input_columns="col1", output_columns=["out1", "out2"], operations=(lambda x: (x, x * 5)),
|
|
columns_order=['col0', 'out1', 'out2'], num_parallel_workers=2)
|
|
|
|
# Expected column order is |col0|out1|out2|
|
|
i = 0
|
|
for item in data1.create_tuple_iterator():
|
|
golden = np.array([i])
|
|
assert np.array_equal(item[0], golden)
|
|
golden = np.array([[i, i + 1], [i + 2, i + 3]])
|
|
assert np.array_equal(item[1], golden)
|
|
golden = np.array([[i * 5, (i + 1) * 5], [(i + 2) * 5, (i + 3) * 5]])
|
|
assert np.array_equal(item[2], golden)
|
|
i = i + 1
|
|
|
|
|
|
def test_case_11():
|
|
"""
|
|
Test map column order when len(input_columns) != len(output_columns).
|
|
"""
|
|
logger.info("Test map column order when len(input_columns) != len(output_columns), "
|
|
"and columns_order drops some columns.")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_mc(2048), ["col0", "col1"])
|
|
data1 = data1.map(input_columns="col1", output_columns=["out1", "out2"], operations=(lambda x: (x, x * 5)),
|
|
columns_order=['out1', 'out2'], num_parallel_workers=2)
|
|
|
|
# Expected column order is |out1|out2|
|
|
i = 0
|
|
for item in data1.create_tuple_iterator():
|
|
# len should be 2 because col0 is dropped (not included in columns_order)
|
|
assert len(item) == 2
|
|
golden = np.array([[i, i + 1], [i + 2, i + 3]])
|
|
assert np.array_equal(item[0], golden)
|
|
golden = np.array([[i * 5, (i + 1) * 5], [(i + 2) * 5, (i + 3) * 5]])
|
|
assert np.array_equal(item[1], golden)
|
|
i = i + 1
|
|
|
|
|
|
def test_case_12():
|
|
"""
|
|
Test map column order when input_columns and output_columns are None.
|
|
"""
|
|
logger.info("Test map column order when input_columns and output_columns are None.")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_mc(2048), ["col0", "col1"])
|
|
data1 = data1.map(operations=(lambda x: (x * 5)), num_parallel_workers=2)
|
|
|
|
# Expected column order is |col0|col1|
|
|
i = 0
|
|
for item in data1.create_tuple_iterator():
|
|
assert len(item) == 2
|
|
golden = np.array([i * 5])
|
|
assert np.array_equal(item[0], golden)
|
|
golden = np.array([[i, i + 1], [i + 2, i + 3]])
|
|
assert np.array_equal(item[1], golden)
|
|
i = i + 1
|
|
|
|
data1 = ds.GeneratorDataset(generator_mc(2048), ["col0", "col1"])
|
|
data1 = data1.map(operations=(lambda x: (x * 5)), columns_order=["col1", "col0"], num_parallel_workers=2)
|
|
|
|
# Expected column order is |col0|col1|
|
|
i = 0
|
|
for item in data1.create_tuple_iterator():
|
|
assert len(item) == 2
|
|
golden = np.array([i * 5])
|
|
assert np.array_equal(item[1], golden)
|
|
golden = np.array([[i, i + 1], [i + 2, i + 3]])
|
|
assert np.array_equal(item[0], golden)
|
|
i = i + 1
|
|
|
|
|
|
def test_case_13():
|
|
"""
|
|
Test map column order when input_columns is None.
|
|
"""
|
|
logger.info("Test map column order when input_columns is None.")
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_mc(2048), ["col0", "col1"])
|
|
data1 = data1.map(operations=(lambda x: (x * 5)), output_columns=["out0"], num_parallel_workers=2)
|
|
|
|
# Expected column order is |out0|col1|
|
|
i = 0
|
|
for item in data1.create_tuple_iterator():
|
|
assert len(item) == 2
|
|
golden = np.array([i * 5])
|
|
assert np.array_equal(item[0], golden)
|
|
golden = np.array([[i, i + 1], [i + 2, i + 3]])
|
|
assert np.array_equal(item[1], golden)
|
|
i = i + 1
|
|
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
# len should be 2 because col0 is dropped (not included in columns_order)
|
|
assert len(item) == 2
|
|
golden = np.array([i * 5])
|
|
assert np.array_equal(item["out0"], golden)
|
|
golden = np.array([[i, i + 1], [i + 2, i + 3]])
|
|
assert np.array_equal(item["col1"], golden)
|
|
i = i + 1
|
|
|
|
|
|
def test_case_14():
|
|
"""
|
|
Test 1D Generator MP + CPP sampler
|
|
"""
|
|
logger.info("Test 1D Generator MP : 0 - 63")
|
|
|
|
source = [(np.array([x]),) for x in range(256)]
|
|
ds1 = ds.GeneratorDataset(source, ["data"], sampler=ds.SequentialSampler(), num_parallel_workers=4).repeat(2)
|
|
i = 0
|
|
for data in ds1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([i])
|
|
assert np.array_equal(data["data"], golden)
|
|
i = i + 1
|
|
if i == 256:
|
|
i = 0
|
|
|
|
|
|
def test_case_15():
|
|
"""
|
|
Test 1D Generator MP + Python sampler
|
|
"""
|
|
logger.info("Test 1D Generator MP : 0 - 63")
|
|
|
|
sampler = [x for x in range(256)]
|
|
source = [(np.array([x]),) for x in range(256)]
|
|
ds1 = ds.GeneratorDataset(source, ["data"], sampler=sampler, num_parallel_workers=4).repeat(2)
|
|
i = 0
|
|
for data in ds1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([i])
|
|
assert np.array_equal(data["data"], golden)
|
|
i = i + 1
|
|
if i == 256:
|
|
i = 0
|
|
|
|
|
|
def test_case_16():
|
|
"""
|
|
Test multi column generator Mp + CPP sampler
|
|
"""
|
|
logger.info("Test multi column generator")
|
|
|
|
source = [(np.array([x]), np.array([x + 1])) for x in range(256)]
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(source, ["col0", "col1"], sampler=ds.SequentialSampler())
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([i])
|
|
assert np.array_equal(item["col0"], golden)
|
|
golden = np.array([i + 1])
|
|
assert np.array_equal(item["col1"], golden)
|
|
i = i + 1
|
|
|
|
|
|
def test_case_17():
|
|
"""
|
|
Test multi column generator Mp + Python sampler
|
|
"""
|
|
logger.info("Test multi column generator")
|
|
|
|
sampler = [x for x in range(256)]
|
|
source = [(np.array([x]), np.array([x + 1])) for x in range(256)]
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(source, ["col0", "col1"], sampler=sampler)
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([i])
|
|
assert np.array_equal(item["col0"], golden)
|
|
golden = np.array([i + 1])
|
|
assert np.array_equal(item["col1"], golden)
|
|
i = i + 1
|
|
|
|
|
|
def test_case_error_1():
|
|
def generator_np():
|
|
for i in range(64):
|
|
yield (np.array([{i}]),)
|
|
|
|
with pytest.raises(RuntimeError) as info:
|
|
data1 = ds.GeneratorDataset(generator_np, ["data"])
|
|
for _ in data1:
|
|
pass
|
|
assert "Invalid data type" in str(info.value)
|
|
|
|
|
|
def test_case_error_2():
|
|
def generator_np():
|
|
for i in range(64):
|
|
yield ({i},)
|
|
|
|
with pytest.raises(RuntimeError) as info:
|
|
data1 = ds.GeneratorDataset(generator_np, ["data"])
|
|
for _ in data1:
|
|
pass
|
|
assert "Generator should return a tuple of numpy arrays" in str(info.value)
|
|
|
|
|
|
def test_case_error_3():
|
|
with pytest.raises(ValueError) as info:
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_mc(2048), ["label", "image"])
|
|
data1 = data1.map(input_columns=["label"], output_columns=["out1", "out2"], operations=(lambda x: (x, x * 5)),
|
|
num_parallel_workers=2)
|
|
|
|
for _ in data1:
|
|
pass
|
|
assert "When (len(input_columns) != len(output_columns)), columns_order must be specified." in str(info.value)
|
|
|
|
|
|
def test_case_error_4():
|
|
with pytest.raises(RuntimeError) as info:
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset(generator_mc(2048), ["label", "image"])
|
|
data1 = data1.map(input_columns=["label"], operations=(lambda x: (x, x * 5)),
|
|
num_parallel_workers=2)
|
|
|
|
for _ in data1:
|
|
pass
|
|
assert "Unexpected error. Result of a tensorOp doesn't match output column names" in str(info.value)
|
|
|
|
|
|
def test_sequential_sampler():
|
|
source = [(np.array([x]),) for x in range(64)]
|
|
ds1 = ds.GeneratorDataset(source, ["data"], sampler=ds.SequentialSampler())
|
|
i = 0
|
|
for data in ds1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([i])
|
|
assert np.array_equal(data["data"], golden)
|
|
i = i + 1
|
|
|
|
|
|
def test_random_sampler():
|
|
source = [(np.array([x]),) for x in range(64)]
|
|
ds1 = ds.GeneratorDataset(source, ["data"], shuffle=True)
|
|
for _ in ds1.create_dict_iterator(): # each data is a dictionary
|
|
pass
|
|
|
|
|
|
def test_distributed_sampler():
|
|
source = [(np.array([x]),) for x in range(64)]
|
|
for sid in range(8):
|
|
ds1 = ds.GeneratorDataset(source, ["data"], shuffle=False, num_shards=8, shard_id=sid)
|
|
i = sid
|
|
for data in ds1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([i])
|
|
assert np.array_equal(data["data"], golden)
|
|
i = i + 8
|
|
|
|
|
|
def test_num_samples():
|
|
source = [(np.array([x]),) for x in range(64)]
|
|
num_samples = 32
|
|
ds1 = ds.GeneratorDataset(source, ["data"], sampler=ds.SequentialSampler(num_samples=num_samples))
|
|
ds2 = ds.GeneratorDataset(source, ["data"], sampler=[i for i in range(32)], num_samples=num_samples)
|
|
ds3 = ds.GeneratorDataset(generator_1d, ["data"], num_samples=num_samples)
|
|
|
|
count = 0
|
|
for _ in ds1.create_dict_iterator():
|
|
count = count + 1
|
|
assert count == num_samples
|
|
|
|
count = 0
|
|
for _ in ds2.create_dict_iterator():
|
|
count = count + 1
|
|
assert count == num_samples
|
|
|
|
count = 0
|
|
for _ in ds3.create_dict_iterator():
|
|
count = count + 1
|
|
assert count == num_samples
|
|
|
|
|
|
def test_num_samples_underflow():
|
|
source = [(np.array([x]),) for x in range(64)]
|
|
num_samples = 256
|
|
ds2 = ds.GeneratorDataset(source, ["data"], sampler=[i for i in range(64)], num_samples=num_samples)
|
|
ds3 = ds.GeneratorDataset(generator_1d, ["data"], num_samples=num_samples)
|
|
|
|
count = 0
|
|
for _ in ds2.create_dict_iterator():
|
|
count = count + 1
|
|
assert count == 64
|
|
|
|
count = 0
|
|
for _ in ds3.create_dict_iterator():
|
|
count = count + 1
|
|
assert count == 64
|
|
|
|
|
|
def type_tester_with_type_check_2c_schema(t, c):
|
|
logger.info("Test with Type {}".format(t.__name__))
|
|
|
|
schema = ds.Schema()
|
|
schema.add_column("data0", c[0])
|
|
schema.add_column("data1", c[1])
|
|
|
|
# apply dataset operations
|
|
data1 = ds.GeneratorDataset((lambda: generator_with_type_2c(t)), schema=schema)
|
|
|
|
data1 = data1.batch(4)
|
|
|
|
i = 0
|
|
for item in data1.create_dict_iterator(): # each data is a dictionary
|
|
golden = np.array([[i], [i + 1], [i + 2], [i + 3]], dtype=t)
|
|
assert np.array_equal(item["data0"], golden)
|
|
i = i + 4
|
|
|
|
|
|
def test_schema():
|
|
"""
|
|
Test 2 column Generator on different data type with type check with schema input
|
|
"""
|
|
logger.info("Test 2 column Generator on all data types with type check")
|
|
|
|
np_types = [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float32,
|
|
np.float64]
|
|
de_types = [mstype.int8, mstype.int16, mstype.int32, mstype.int64, mstype.uint8, mstype.uint16, mstype.uint32,
|
|
mstype.uint64, mstype.float32, mstype.float64]
|
|
|
|
for i, _ in enumerate(np_types):
|
|
type_tester_with_type_check_2c_schema(np_types[i], [de_types[i], de_types[i]])
|
|
|
|
|
|
def manual_test_keyborad_interrupt():
|
|
"""
|
|
Test keyborad_interrupt
|
|
"""
|
|
logger.info("Test 1D Generator MP : 0 - 63")
|
|
|
|
class MyDS():
|
|
def __getitem__(self, item):
|
|
while True:
|
|
pass
|
|
|
|
def __len__(self):
|
|
return 1024
|
|
|
|
ds1 = ds.GeneratorDataset(MyDS(), ["data"], num_parallel_workers=4).repeat(2)
|
|
for _ in ds1.create_dict_iterator(): # each data is a dictionary
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_case_0()
|
|
test_case_1()
|
|
test_case_2()
|
|
test_case_3()
|
|
test_case_4()
|
|
test_case_5()
|
|
test_case_6()
|
|
test_case_7()
|
|
test_case_8()
|
|
test_case_9()
|
|
test_case_10()
|
|
test_case_11()
|
|
test_case_12()
|
|
test_case_13()
|
|
test_case_14()
|
|
test_case_15()
|
|
test_case_16()
|
|
test_case_17()
|
|
test_case_error_1()
|
|
test_case_error_2()
|
|
test_case_error_3()
|
|
test_case_error_4()
|
|
test_sequential_sampler()
|
|
test_distributed_sampler()
|
|
test_random_sampler()
|
|
test_num_samples()
|
|
test_num_samples_underflow()
|
|
test_schema()
|