You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
236 lines
8.5 KiB
236 lines
8.5 KiB
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing the random vertical flip op in DE
|
|
"""
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms.vision.c_transforms as c_vision
|
|
import mindspore.dataset.transforms.vision.py_transforms as py_vision
|
|
from mindspore import log as logger
|
|
from util import save_and_check_md5, visualize, diff_mse, \
|
|
config_get_set_seed, config_get_set_num_parallel_workers
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
|
|
def v_flip(image):
|
|
"""
|
|
Apply the random_vertical
|
|
"""
|
|
|
|
# with the seed provided in this test case, it will always flip.
|
|
# that's why we flip here too
|
|
image = image[::-1, :, :]
|
|
return image
|
|
|
|
|
|
def visualize_with_mse(image_de_random_vertical, image_pil_random_vertical, mse, image_original):
|
|
"""
|
|
visualizes the image using DE op and Numpy op
|
|
"""
|
|
plt.subplot(141)
|
|
plt.imshow(image_original)
|
|
plt.title("Original image")
|
|
|
|
plt.subplot(142)
|
|
plt.imshow(image_de_random_vertical)
|
|
plt.title("DE random_vertical image")
|
|
|
|
plt.subplot(143)
|
|
plt.imshow(image_pil_random_vertical)
|
|
plt.title("vertically flipped image")
|
|
|
|
plt.subplot(144)
|
|
plt.imshow(image_de_random_vertical - image_pil_random_vertical)
|
|
plt.title("Difference image, mse : {}".format(mse))
|
|
plt.show()
|
|
|
|
|
|
def test_random_vertical_op():
|
|
"""
|
|
Test random_vertical with default probability
|
|
"""
|
|
logger.info("Test random_vertical")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
decode_op = c_vision.Decode()
|
|
random_vertical_op = c_vision.RandomVerticalFlip()
|
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
|
data1 = data1.map(input_columns=["image"], operations=random_vertical_op)
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data2 = data2.map(input_columns=["image"], operations=decode_op)
|
|
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
|
|
|
# with the seed value, we can only guarantee the first number generated
|
|
if num_iter > 0:
|
|
break
|
|
|
|
image_v_flipped = item1["image"]
|
|
|
|
image = item2["image"]
|
|
image_v_flipped_2 = v_flip(image)
|
|
|
|
diff = image_v_flipped - image_v_flipped_2
|
|
mse = np.sum(np.power(diff, 2))
|
|
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
|
|
# Uncomment below line if you want to visualize images
|
|
# visualize_with_mse(image_v_flipped, image_v_flipped_2, mse, image)
|
|
num_iter += 1
|
|
|
|
def test_random_vertical_valid_prob_c():
|
|
"""
|
|
Test RandomVerticalFlip op with c_transforms: valid non-default input, expect to pass
|
|
"""
|
|
logger.info("test_random_vertical_valid_prob_c")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
decode_op = c_vision.Decode()
|
|
random_horizontal_op = c_vision.RandomVerticalFlip(0.8)
|
|
data = data.map(input_columns=["image"], operations=decode_op)
|
|
data = data.map(input_columns=["image"], operations=random_horizontal_op)
|
|
|
|
filename = "random_vertical_01_c_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_vertical_valid_prob_py():
|
|
"""
|
|
Test RandomVerticalFlip op with py_transforms: valid non-default input, expect to pass
|
|
"""
|
|
logger.info("test_random_vertical_valid_prob_py")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.RandomVerticalFlip(0.8),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
|
|
filename = "random_vertical_01_py_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config setting
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
def test_random_vertical_invalid_prob_c():
|
|
"""
|
|
Test RandomVerticalFlip op in c_transforms: invalid input, expect to raise error
|
|
"""
|
|
logger.info("test_random_vertical_invalid_prob_c")
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
decode_op = c_vision.Decode()
|
|
try:
|
|
# Note: Valid range of prob should be [0.0, 1.0]
|
|
random_horizontal_op = c_vision.RandomVerticalFlip(1.5)
|
|
data = data.map(input_columns=["image"], operations=decode_op)
|
|
data = data.map(input_columns=["image"], operations=random_horizontal_op)
|
|
except ValueError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "Input is not" in str(e)
|
|
|
|
def test_random_vertical_invalid_prob_py():
|
|
"""
|
|
Test RandomVerticalFlip op in py_transforms: invalid input, expect to raise error
|
|
"""
|
|
logger.info("test_random_vertical_invalid_prob_py")
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
try:
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
# Note: Valid range of prob should be [0.0, 1.0]
|
|
py_vision.RandomVerticalFlip(1.5),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data = data.map(input_columns=["image"], operations=transform())
|
|
except ValueError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "Input is not" in str(e)
|
|
|
|
def test_random_vertical_comp(plot=False):
|
|
"""
|
|
Test test_random_vertical_flip and compare between python and c image augmentation ops
|
|
"""
|
|
logger.info("test_random_vertical_comp")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
decode_op = c_vision.Decode()
|
|
# Note: The image must be flipped if prob is set to be 1
|
|
random_horizontal_op = c_vision.RandomVerticalFlip(1)
|
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
|
data1 = data1.map(input_columns=["image"], operations=random_horizontal_op)
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
# Note: The image must be flipped if prob is set to be 1
|
|
py_vision.RandomVerticalFlip(1),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = py_vision.ComposeOp(transforms)
|
|
data2 = data2.map(input_columns=["image"], operations=transform())
|
|
|
|
images_list_c = []
|
|
images_list_py = []
|
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
|
image_c = item1["image"]
|
|
image_py = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
images_list_c.append(image_c)
|
|
images_list_py.append(image_py)
|
|
|
|
# Check if the output images are the same
|
|
mse = diff_mse(image_c, image_py)
|
|
assert mse < 0.001
|
|
if plot:
|
|
visualize(images_list_c, images_list_py)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_random_vertical_op()
|
|
test_random_vertical_valid_prob_c()
|
|
test_random_vertical_valid_prob_py()
|
|
test_random_vertical_invalid_prob_c()
|
|
test_random_vertical_invalid_prob_py()
|
|
test_random_vertical_comp(True)
|