You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/distributed/parameter_prefetch.cc

262 lines
9.4 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <set>
#include <string>
#include <vector>
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
namespace paddle {
namespace operators {
namespace distributed {
using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;
6 years ago
static size_t GetSectionIndex(int64_t id,
const std::vector<int64_t>& abs_sections) {
for (size_t i = 1; i < abs_sections.size(); ++i) {
if (id < abs_sections[i]) {
return i - 1;
}
}
return abs_sections.size() - 1;
}
6 years ago
static std::vector<int64_t> ToAbsoluteSection(
6 years ago
const std::vector<int>& height_sections) {
std::vector<int64_t> abs_sections;
abs_sections.resize(height_sections.size());
abs_sections[0] = 0;
for (size_t i = 1; i < height_sections.size(); ++i) {
abs_sections[i] = height_sections[i - 1] + abs_sections[i - 1];
}
return abs_sections;
}
6 years ago
static std::vector<std::vector<int64_t>> SplitIds(
const std::vector<int64_t>& ids_vector,
const std::vector<int>& height_section, framework::Scope* scope) {
std::set<int64_t> all_ids;
for (auto id : ids_vector) {
all_ids.insert(id);
}
auto abs_sections = ToAbsoluteSection(height_section);
std::vector<std::vector<int64_t>> splited_ids;
splited_ids.resize(height_section.size() + 1);
for (auto& id : all_ids) {
auto section_index = GetSectionIndex(id, abs_sections);
splited_ids[section_index].push_back(id - abs_sections[section_index]);
}
return splited_ids;
}
6 years ago
static void SplitIdsIntoMultipleVarsBySection(
const std::vector<std::string>& in_var_names,
6 years ago
const std::vector<int>& height_section,
const std::vector<std::vector<int64_t>>& splited_ids,
framework::Scope* scope) {
PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size(), "");
auto place = platform::CPUPlace();
for (size_t i = 0; i < in_var_names.size(); ++i) {
auto* id_tensor =
scope->Var(in_var_names[i])->GetMutable<framework::LoDTensor>();
auto& ids = splited_ids[i];
if (!ids.empty()) {
auto* id_tensor_data = id_tensor->mutable_data<int64_t>(
framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
}
}
}
6 years ago
static void MergeMultipleVarsIntoOneBySection(
const std::string& id_name, const std::vector<int64_t>& ids_vector,
const std::string& out_name, const std::vector<std::string>& out_var_names,
6 years ago
const std::vector<int>& height_section,
const std::vector<std::vector<int64_t>>& splited_ids,
const framework::ExecutionContext& context, framework::Scope* scope,
platform::DeviceContext* actual_ctx) {
6 years ago
PADDLE_ENFORCE_EQ(out_var_names.size(), height_section.size(), "");
auto cpu_place = platform::CPUPlace();
auto abs_sections = ToAbsoluteSection(height_section);
std::unordered_map<int64_t, std::vector<size_t>> id_to_offset;
for (size_t i = 0; i < ids_vector.size(); ++i) {
id_to_offset[ids_vector[i]].push_back(i);
}
auto& id_tensor = scope->FindVar(id_name)->Get<framework::LoDTensor>();
auto* out_tensor =
scope->FindVar(out_name)->GetMutable<framework::LoDTensor>();
PADDLE_ENFORCE_GT(
out_tensor->numel(), 0,
"When calling this method, the LoDTensor's numel must larger than zero. "
"Please check LoDTensor::Resize has been called first.");
auto* out_tensor_data = out_tensor->mutable_data<float>(id_tensor.place());
bool is_on_cpu_place = true;
if (!platform::is_cpu_place(id_tensor.place())) {
is_on_cpu_place = false;
}
for (size_t section_idx = 0; section_idx < out_var_names.size();
++section_idx) {
auto& ids_in_this_section = splited_ids[section_idx];
6 years ago
if (!ids_in_this_section.empty()) {
auto& prefetch_out_var =
scope->Var(out_var_names[section_idx])->Get<framework::LoDTensor>();
const auto* out_var_data = prefetch_out_var.data<float>();
auto& dims = prefetch_out_var.dims();
PADDLE_ENFORCE_EQ(dims.size(), 2, "");
PADDLE_ENFORCE_EQ(ids_in_this_section.size(), dims[0]);
auto row_numel = dims[1];
for (int64_t i = 0; i < dims[0]; ++i) {
6 years ago
auto id = ids_in_this_section[i];
auto origin_id = id + abs_sections[section_idx];
auto& offsets = id_to_offset[origin_id];
for (auto& offset : offsets) {
// should support GPU tensor
if (is_on_cpu_place) {
memory::Copy(cpu_place, out_tensor_data + offset * row_numel,
cpu_place, out_var_data + i * row_numel,
sizeof(float) * row_numel);
} else {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW("paddle is not compiled with CUDA!");
#else
auto stream =
static_cast<platform::CUDADeviceContext*>(actual_ctx)->stream();
memory::Copy(boost::get<platform::CUDAPlace>(id_tensor.place()),
out_tensor_data + offset * row_numel, cpu_place,
out_var_data + i * row_numel,
sizeof(float) * row_numel, stream);
#endif
}
6 years ago
}
}
6 years ago
} else {
VLOG(3) << "ids in this section is empty";
}
}
}
void prefetch(const std::string& id_name, const std::string& out_name,
const std::vector<std::string>& table_names,
const std::vector<std::string>& epmap,
6 years ago
const std::vector<int>& height_sections,
const framework::ExecutionContext& context,
const framework::Scope& scope) {
auto& local_scope = scope.NewScope();
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& cpu_ctx = *pool.Get(platform::CPUPlace());
auto& actual_ctx = *pool.Get(context.GetPlace());
distributed::RPCClient* rpc_client =
distributed::RPCClient::GetInstance<RPCCLIENT_T>(
context.Attr<int>("trainer_id"));
std::vector<std::string> in_var_names;
std::vector<std::string> out_var_names;
for (size_t i = 0; i < epmap.size(); ++i) {
in_var_names.push_back(id_name + "@" + epmap[i]);
out_var_names.push_back(out_name + "@" + epmap[i]);
}
auto& id_tensor = scope.FindVar(id_name)->Get<framework::LoDTensor>();
std::vector<int64_t> ids_vector;
if (platform::is_cpu_place(id_tensor.place())) {
auto* id_data = id_tensor.data<int64_t>();
for (int64_t i = 0; i < id_tensor.numel(); ++i) {
ids_vector.push_back(id_data[i]);
}
} else {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW("paddle is not compiled with CUDA!");
#else
auto cpu_place = platform::CPUPlace();
framework::LoDTensor cpu_tensor;
auto* cpu_tensor_data =
cpu_tensor.mutable_data<int64_t>(id_tensor.dims(), cpu_place);
auto stream =
static_cast<platform::CUDADeviceContext*>(&actual_ctx)->stream();
memory::Copy(cpu_place, cpu_tensor_data,
boost::get<platform::CUDAPlace>(id_tensor.place()),
id_tensor.data<int64_t>(), sizeof(int64_t) * id_tensor.numel(),
stream);
for (size_t i = 0; i < cpu_tensor.numel(); ++i) {
ids_vector.push_back(cpu_tensor_data[i]);
}
#endif
}
auto splited_ids = SplitIds(ids_vector, height_sections, &local_scope);
SplitIdsIntoMultipleVarsBySection(in_var_names, height_sections, splited_ids,
&local_scope);
// create output var in local scope
for (auto& name : out_var_names) {
local_scope.Var(name)->GetMutable<framework::LoDTensor>();
}
std::vector<distributed::VarHandlePtr> rets;
for (size_t i = 0; i < in_var_names.size(); i++) {
if (NeedSend(local_scope, in_var_names[i])) {
VLOG(3) << "sending " << in_var_names[i] << " to " << epmap[i]
<< " to get " << out_var_names[i] << " back";
rets.push_back(rpc_client->AsyncPrefetchVar(
epmap[i], cpu_ctx, local_scope, in_var_names[i], out_var_names[i],
table_names[i]));
} else {
VLOG(3) << "don't send no-initialied variable: " << out_var_names[i];
}
}
6 years ago
for (size_t i = 0; i < rets.size(); i++) {
PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
}
MergeMultipleVarsIntoOneBySection(id_name, ids_vector, out_name,
out_var_names, height_sections, splited_ids,
context, &local_scope, &actual_ctx);
scope.DeleteScope(&local_scope);
}
}; // namespace distributed
}; // namespace operators
}; // namespace paddle