You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/pool_with_index_op.cc

363 lines
15 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/pool_with_index_op.h"
#include <memory>
namespace paddle {
namespace operators {
inline int MaxPoolOutputSize(int input_size, int filter_size, int padding,
7 years ago
int stride) {
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
return output_size;
}
class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
7 years ago
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
platform::errors::InvalidArgument(
"Input(X) of Pooling should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
platform::errors::InvalidArgument(
"Output(Out) of Pooling should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput("Mask"), true,
platform::errors::InvalidArgument(
"Output(Mask) of Pooling should not be null."));
auto in_x_dims = ctx->GetInputDim("X");
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
bool adaptive = ctx->Attrs().Get<bool>("adaptive");
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
7 years ago
"Pooling intput should be 4-D or 5-D tensor.");
7 years ago
if (ctx->Attrs().Get<bool>("global_pooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
7 years ago
for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0;
ksize[i] = static_cast<int>(in_x_dims[i + 2]);
7 years ago
}
}
PADDLE_ENFORCE_EQ(in_x_dims.size() - ksize.size(), 2U,
platform::errors::InvalidArgument(
"Input size and pooling size should be consistent."));
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
platform::errors::InvalidArgument(
"Strides size and pooling size should be the same."));
PADDLE_ENFORCE_EQ(
ksize.size(), paddings.size(),
platform::errors::InvalidArgument(
"Paddings size and pooling size should be the same."));
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
if (adaptive) {
output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
} else {
for (size_t i = 0; i < ksize.size(); ++i) {
output_shape.push_back(MaxPoolOutputSize(in_x_dims[i + 2], ksize[i],
paddings[i], strides[i]));
}
}
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
}
};
class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
7 years ago
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("Mask"), true,
platform::errors::InvalidArgument("Input(Mask) must not be null."));
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::InvalidArgument("Input(X) must not be null."));
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::InvalidArgument(
"Input(Out@GRAD) should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
platform::errors::InvalidArgument(
"Output(X@GRAD) should not be null."));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};
class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"X",
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H is the height of the image, "
"and W is the width of the image.");
AddOutput("Out",
"(Tensor) The output tensor of pooling operator. "
"The format of output tensor is also NCHW, "
"where N is batch size, C is "
"the number of channels, H is the height of the image "
"and W is the width of the image.");
AddOutput("Mask",
"(Tensor) The Mask tensor of pooling operator."
"The format of output tensor is also NCHW, "
"where N is batch size, C is the number of channels, "
"H is the height of the image, "
"and W is the width of the image. "
"It represents the index in the current feature map.");
7 years ago
AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window size(height, "
"width) of pooling operator. "
7 years ago
"If global_pooling = true, ksize and paddings "
7 years ago
"will be ignored."); // TODO(Chengduo): Add
// checker. (Currently,
7 years ago
// TypedAttrChecker don't support vector type.)
7 years ago
AddAttr<bool>(
7 years ago
"global_pooling",
"(bool, default:false) Whether to use the global pooling. "
7 years ago
"If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false);
AddAttr<bool>(
"adaptive",
"(bool, default False) When true, will perform adaptive pooling "
"instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value.")
.SetDefault(false);
AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1, 1}), strides(height, "
"width) of pooling operator.")
7 years ago
.SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently,
7 years ago
// TypedAttrChecker don't support vector type.)
7 years ago
AddAttr<std::vector<int>>(
"paddings",
"(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
"operator. "
7 years ago
"If global_pooling = true, paddings and will be ignored.")
7 years ago
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
7 years ago
// TypedAttrChecker don't support vector type.)
AddComment(R"DOC(
MaxPool2d Operator.
7 years ago
The maxPooling2d with index operation calculates the output and the mask
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature,
and W is the width of the feature.
7 years ago
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
7 years ago
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape: $(N, C, H_{in}, W_{in})$
7 years ago
Output:
Out shape: $(N, C, H_{out}, W_{out})$
Mask shape: $(N, C, H_{out}, W_{out})$
Where
$$
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
$$
For adaptive = true:
$$
H_{out} = ksize[0] W_{out} = ksize[1]
$$
)DOC");
}
};
class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCDHW, where N is batch size, C is "
"the number of channels, and D, H and W are the depth, height and "
"width of "
"the image, respectively");
AddOutput("Out",
"(Tensor) The output tensor of pooling operator. "
"The format of output tensor is also NCDHW, "
"where N is the batch size, C is the number of channels, "
"and D, H and W are the depth, height and "
"width of the image, respectively.");
AddOutput("Mask",
"(Tensor) The Mask tensor of pooling operator. "
"The format of output tensor is also NCDHW, "
"where N is the batch size, C is the number of channels, and "
"D, H and W are the depth, height and width "
"of the image, respectively. "
"It represents the index in the current feature map.");
7 years ago
AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window size(depth, "
"height, width) of pooling operator. "
7 years ago
"If global_pooling = true, ksize and paddings "
7 years ago
"will be ignored."); // TODO(Chengduo): Add
// checker. (Currently,
7 years ago
// TypedAttrChecker don't support vector type.)
7 years ago
AddAttr<bool>(
7 years ago
"global_pooling",
"(bool, default false) Whether to use the global pooling. "
7 years ago
"If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false);
AddAttr<bool>(
"adaptive",
"(bool, default False) When true, will perform adaptive pooling "
"instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value.")
.SetDefault(false);
7 years ago
AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1,1,1}), strides(depth, "
7 years ago
"height, width) of pooling operator.")
7 years ago
.SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently,
7 years ago
// TypedAttrChecker don't support vector type.)
7 years ago
AddAttr<std::vector<int>>(
"paddings",
"(vector, default {0,0,0}), paddings(depth, "
"height, width) of pooling operator. "
7 years ago
"If global_pooling = true, paddings and ksize will be ignored.")
7 years ago
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
7 years ago
// TypedAttrChecker don't support vector type.)
AddComment(R"DOC(
MaxPool3d Operator.
7 years ago
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively.
Parameters(ksize, strides, paddings) are three elements.
7 years ago
These three elements represent depth, height and width, respectively.
7 years ago
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape: $(N, C, D_{in}, H_{in}, W_{in})$
7 years ago
Output:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
Where
$$
D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$
For adaptive = true:
$$
D_{out} = ksize[0] H_{out} = ksize[1] W_{out} = ksize[2]
$$
)DOC");
}
};
7 years ago
template <typename T>
class MaxPoolWithIndexGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType(this->ForwardOpType() + "_grad");
op->SetAttrMap(this->Attrs());
op->SetInput("X", this->Input("X"));
op->SetInput("Mask", this->Output("Mask"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
MaxPoolWithIndexOpGradNoNeedBufferVarsInference, "X");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
ops::MaxPool2dWithIndexOpMaker,
ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(max_pool2d_with_index_grad, ops::MaxPoolWithIndexOpGrad,
ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL(
7 years ago
max_pool2d_with_index,
ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
int>);
REGISTER_OP_CPU_KERNEL(
7 years ago
max_pool2d_with_index_grad,
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
int>,
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
int>);
REGISTER_OPERATOR(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
ops::MaxPool3dWithIndexOpMaker,
ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(max_pool3d_with_index_grad, ops::MaxPoolWithIndexOpGrad,
ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL(
7 years ago
max_pool3d_with_index,
ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
int>);
REGISTER_OP_CPU_KERNEL(
7 years ago
max_pool3d_with_index_grad,
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
int>,
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
int>);