|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <iterator>
|
|
|
|
#include <random>
|
|
|
|
#include <set>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
#include "paddle/fluid/framework/selected_rows.h"
|
|
|
|
#include "paddle/fluid/operators/math/sampler.h"
|
|
|
|
#include "unsupported/Eigen/CXX11/Tensor"
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_DISTRIBUTE
|
|
|
|
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
using SelectedRows = framework::SelectedRows;
|
|
|
|
using Sampler = math::Sampler;
|
|
|
|
using DDim = framework::DDim;
|
|
|
|
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
|
|
typename IndexType = Eigen::DenseIndex>
|
|
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
void PrepareSamples(const framework::ExecutionContext &context,
|
|
|
|
Sampler *sampler) {
|
|
|
|
auto label = context.Input<Tensor>("Label");
|
|
|
|
const int64_t *label_data = label->data<int64_t>();
|
|
|
|
auto label_dims = label->dims();
|
|
|
|
// for unitest
|
|
|
|
std::vector<int> custom_neg_classes =
|
|
|
|
context.Attr<std::vector<int>>("custom_neg_classes");
|
|
|
|
|
|
|
|
auto sample_labels = context.Output<Tensor>("SampleLabels");
|
|
|
|
auto sample_labels_dims = sample_labels->dims();
|
|
|
|
int64_t *sample_labels_data =
|
|
|
|
sample_labels->mutable_data<int64_t>(context.GetPlace());
|
|
|
|
|
|
|
|
int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
|
|
|
|
int index = 0;
|
|
|
|
for (int64_t i = 0; i < label_dims[0]; ++i) {
|
|
|
|
int j = 0;
|
|
|
|
for (; j < num_label; ++j) {
|
|
|
|
sample_labels_data[index++] = label_data[i * num_label + j];
|
|
|
|
}
|
|
|
|
if (custom_neg_classes.size() > 0) {
|
|
|
|
for (auto label : custom_neg_classes) {
|
|
|
|
sample_labels_data[index++] = label;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (; j < sample_labels_dims[1]; ++j) {
|
|
|
|
// TODO(wanghaoshuang): support more distribution sampling
|
|
|
|
sample_labels_data[index++] = sampler->Sample();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
class NCEKernel : public framework::OpKernel<T> {
|
|
|
|
public:
|
|
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
|
|
int sampler_type = context.Attr<int>("sampler");
|
|
|
|
int seed = context.Attr<int>("seed");
|
|
|
|
int num_total_classes = context.Attr<int>("num_total_classes");
|
|
|
|
int num_neg_samples = context.Attr<int>("num_neg_samples");
|
|
|
|
|
|
|
|
Sampler *sampler;
|
|
|
|
switch (sampler_type) {
|
|
|
|
case 0: {
|
|
|
|
sampler = new math::UniformSampler(num_total_classes - 1, seed);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 1: {
|
|
|
|
sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 2: {
|
|
|
|
auto dist_probs = context.Input<Tensor>("CustomDistProbs");
|
|
|
|
auto dist_alias = context.Input<Tensor>("CustomDistAlias");
|
|
|
|
auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
|
|
|
|
PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
|
|
|
|
PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);
|
|
|
|
|
|
|
|
const float *probs_data = dist_probs->data<float>();
|
|
|
|
const int *alias_data = dist_alias->data<int>();
|
|
|
|
const float *alias_probs_data = dist_alias_probs->data<float>();
|
|
|
|
sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
|
|
|
|
alias_data, alias_probs_data, seed);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: { PADDLE_THROW("Unsupported SamplerType."); }
|
|
|
|
}
|
|
|
|
|
|
|
|
PrepareSamples<DeviceContext, T>(context, sampler);
|
|
|
|
auto sample_labels = context.Output<Tensor>("SampleLabels");
|
|
|
|
const int64_t *sample_labels_data = sample_labels->data<int64_t>();
|
|
|
|
|
|
|
|
for (int x = 0; x < sample_labels->numel(); x++) {
|
|
|
|
PADDLE_ENFORCE_GE(sample_labels_data[x], 0, "nce sample label %d", x);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto sample_out = context.Output<Tensor>("SampleLogits");
|
|
|
|
T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
|
|
|
|
auto label = context.Input<Tensor>("Label");
|
|
|
|
auto sample_weight = context.Input<Tensor>("SampleWeight");
|
|
|
|
const T *sample_weight_data = nullptr;
|
|
|
|
if (sample_weight != nullptr) {
|
|
|
|
sample_weight_data = sample_weight->data<T>();
|
|
|
|
}
|
|
|
|
auto out = context.Output<Tensor>("Cost");
|
|
|
|
T *out_data = out->mutable_data<T>(context.GetPlace());
|
|
|
|
int64_t num_true_class = 1;
|
|
|
|
if (label != nullptr) {
|
|
|
|
num_true_class = label->dims()[1];
|
|
|
|
}
|
|
|
|
int64_t sampled_labels_num = sample_labels->dims()[1];
|
|
|
|
// T b = 1. / num_total_classes * num_neg_samples;
|
|
|
|
// forward bias
|
|
|
|
auto bias = context.Input<Tensor>("Bias");
|
|
|
|
if (bias != nullptr) {
|
|
|
|
const T *bias_data = bias->data<T>();
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
sample_out_data[i] = bias_data[sample_labels_data[i]];
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
sample_out_data[i] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// forward mul
|
|
|
|
auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
|
|
|
|
|
|
|
|
// for remote prefetch
|
|
|
|
auto remote_prefetch = context.Attr<bool>("remote_prefetch");
|
|
|
|
auto epmap = context.Attr<std::vector<std::string>>("epmap");
|
|
|
|
|
|
|
|
if (remote_prefetch && !epmap.empty()) {
|
|
|
|
// if epmap is not empty, then the parameter will be fetched from remote
|
|
|
|
// parameter
|
|
|
|
// server
|
|
|
|
|
|
|
|
std::vector<int64_t> labels;
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
labels.push_back(sample_labels_data[i]);
|
|
|
|
}
|
|
|
|
std::set<T> st(labels.begin(), labels.end());
|
|
|
|
labels.assign(st.begin(), st.end());
|
|
|
|
|
|
|
|
framework::Scope &local_scope = context.scope().NewScope();
|
|
|
|
|
|
|
|
auto height_sections =
|
|
|
|
context.Attr<std::vector<int64_t>>("height_sections");
|
|
|
|
auto table_names = context.Attr<std::vector<std::string>>("table_names");
|
|
|
|
|
|
|
|
auto *ids = local_scope.Var("Ids@Prefetch");
|
|
|
|
auto *x_tensor = ids->GetMutable<framework::LoDTensor>();
|
|
|
|
x_tensor->mutable_data<int64_t>(
|
|
|
|
framework::make_ddim({static_cast<int64_t>(labels.size()), 1}),
|
|
|
|
context.GetPlace());
|
|
|
|
// copy.
|
|
|
|
std::memcpy(x_tensor->data<int64_t>(), labels.data(),
|
|
|
|
labels.size() * sizeof(int64_t));
|
|
|
|
|
|
|
|
std::vector<int> w_dims = paddle::framework::vectorize2int(
|
|
|
|
context.Input<Tensor>("Weight")->dims());
|
|
|
|
w_dims[0] = static_cast<int>(labels.size());
|
|
|
|
|
|
|
|
auto *w_tensor = local_scope.Var("Weight@Prefetch")
|
|
|
|
->GetMutable<framework::LoDTensor>();
|
|
|
|
w_tensor->Resize(framework::make_ddim(w_dims));
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_DISTRIBUTE
|
|
|
|
operators::distributed::prefetch("Ids@Prefetch", "Weight@Prefetch",
|
|
|
|
table_names, epmap, height_sections,
|
|
|
|
context, local_scope);
|
|
|
|
#else
|
|
|
|
PADDLE_THROW(
|
|
|
|
"paddle is not compiled with distribute support, can not do "
|
|
|
|
"parameter prefetch!");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
auto weight_mat = EigenMatrix<T>::From(
|
|
|
|
(local_scope.Var("Weight@Prefetch")->Get<framework::LoDTensor>()));
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
std::vector<int64_t>::iterator it =
|
|
|
|
std::find(labels.begin(), labels.end(), sample_labels_data[i]);
|
|
|
|
int idx = std::distance(labels.begin(), it);
|
|
|
|
|
|
|
|
Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
|
|
|
|
(input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
|
|
|
|
weight_mat.chip(idx, 0))
|
|
|
|
.sum();
|
|
|
|
sample_out_data[i] += result(0);
|
|
|
|
sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
|
|
|
|
}
|
|
|
|
context.scope().DeleteScope(&local_scope);
|
|
|
|
} else {
|
|
|
|
auto weight_mat =
|
|
|
|
EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
|
|
|
|
(input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
|
|
|
|
weight_mat.chip(sample_labels_data[i], 0))
|
|
|
|
.sum();
|
|
|
|
sample_out_data[i] += result(0);
|
|
|
|
sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// forward cost
|
|
|
|
for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) {
|
|
|
|
out_data[i] = 0;
|
|
|
|
T w = sample_weight == nullptr ? 1. : sample_weight_data[i];
|
|
|
|
for (int64_t j = 0; j < sampled_labels_num; ++j) {
|
|
|
|
int64_t target = sample_labels_data[i * sampled_labels_num + j];
|
|
|
|
T o = sample_out_data[i * sampled_labels_num + j];
|
|
|
|
float b = sampler->Probability(target) * num_neg_samples;
|
|
|
|
T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b));
|
|
|
|
out_data[i] += w * cost;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete sampler;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
class NCEGradKernel : public framework::OpKernel<T> {
|
|
|
|
public:
|
|
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
|
|
auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
|
|
|
|
const T *d_out_data = d_out->data<T>();
|
|
|
|
auto label = context.Input<Tensor>("Label");
|
|
|
|
auto sample_out = context.Input<Tensor>("SampleLogits");
|
|
|
|
const T *sample_out_data = sample_out->data<T>();
|
|
|
|
auto sample_labels = context.Input<Tensor>("SampleLabels");
|
|
|
|
const int64_t *sample_labels_data = sample_labels->data<int64_t>();
|
|
|
|
auto sample_weight = context.Input<Tensor>("SampleWeight");
|
|
|
|
const T *sample_weight_data = nullptr;
|
|
|
|
if (sample_weight != nullptr) {
|
|
|
|
sample_weight_data = sample_weight->data<T>();
|
|
|
|
}
|
|
|
|
int num_neg_samples = context.Attr<int>("num_neg_samples");
|
|
|
|
int num_total_classes = context.Attr<int>("num_total_classes");
|
|
|
|
int num_true_class = 1;
|
|
|
|
if (label != nullptr) {
|
|
|
|
num_true_class = label->dims()[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
int sampler_type = context.Attr<int>("sampler");
|
|
|
|
int seed = context.Attr<int>("seed");
|
|
|
|
Sampler *sampler;
|
|
|
|
switch (sampler_type) {
|
|
|
|
case 0: {
|
|
|
|
sampler = new math::UniformSampler(num_total_classes - 1, seed);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 1: {
|
|
|
|
sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 2: {
|
|
|
|
auto dist_probs = context.Input<Tensor>("CustomDistProbs");
|
|
|
|
auto dist_alias = context.Input<Tensor>("CustomDistAlias");
|
|
|
|
auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
|
|
|
|
PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
|
|
|
|
PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);
|
|
|
|
|
|
|
|
const float *probs_data = dist_probs->data<float>();
|
|
|
|
const int *alias_data = dist_alias->data<int>();
|
|
|
|
const float *alias_probs_data = dist_alias_probs->data<float>();
|
|
|
|
sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
|
|
|
|
alias_data, alias_probs_data, seed);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: { PADDLE_THROW("Unsupported SamplerType."); }
|
|
|
|
}
|
|
|
|
|
|
|
|
// T b = 1. / num_total_classes * num_neg_samples;
|
|
|
|
Tensor sample_grad; // tmp tensor
|
|
|
|
T *sample_grad_data =
|
|
|
|
sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
|
|
|
|
// backward cost
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
int64_t label_idx = i % sample_labels->dims()[1];
|
|
|
|
int64_t sample_idx = i / sample_labels->dims()[1];
|
|
|
|
float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples;
|
|
|
|
T o = sample_out_data[i];
|
|
|
|
T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx];
|
|
|
|
sample_grad_data[i] = label_idx < num_true_class
|
|
|
|
? w * (b / (o + b)) * (o - 1)
|
|
|
|
: w * (o * (1 - o) / (o + b));
|
|
|
|
sample_grad_data[i] *= d_out_data[sample_idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
// get d_bias
|
|
|
|
auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
|
|
|
|
if (d_bias != nullptr) {
|
|
|
|
T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
|
|
|
|
std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_sparse = context.Attr<bool>("is_sparse");
|
|
|
|
|
|
|
|
if (!is_sparse) {
|
|
|
|
// get d_w
|
|
|
|
auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
|
|
|
|
if (d_w != nullptr) {
|
|
|
|
auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
|
|
|
|
std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
|
|
|
|
auto d_w_matrix = EigenMatrix<T>::From(*d_w);
|
|
|
|
auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
d_w_matrix.chip(sample_labels_data[i], 0) +=
|
|
|
|
x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
|
|
|
|
sample_grad_data[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
std::vector<int64_t> labels;
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
labels.push_back(sample_labels_data[i]);
|
|
|
|
}
|
|
|
|
std::set<T> st(labels.begin(), labels.end());
|
|
|
|
labels.assign(st.begin(), st.end());
|
|
|
|
|
|
|
|
auto *table_var = context.InputVar("Weight");
|
|
|
|
DDim table_dim;
|
|
|
|
if (table_var->IsType<LoDTensor>()) {
|
|
|
|
table_dim = context.Input<LoDTensor>("Weight")->dims();
|
|
|
|
} else if (table_var->IsType<SelectedRows>()) {
|
|
|
|
auto *table_t = context.Input<SelectedRows>("Weight");
|
|
|
|
table_dim = table_t->value().dims();
|
|
|
|
} else {
|
|
|
|
PADDLE_THROW(
|
|
|
|
"The parameter Weight of a NCE_OP "
|
|
|
|
"must be either LoDTensor or SelectedRows");
|
|
|
|
}
|
|
|
|
|
|
|
|
auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));
|
|
|
|
|
|
|
|
d_w->set_rows(labels);
|
|
|
|
d_w->set_height(table_dim[0]);
|
|
|
|
|
|
|
|
auto *d_table_value = d_w->mutable_value();
|
|
|
|
d_table_value->Resize(
|
|
|
|
{static_cast<int64_t>(labels.size()), table_dim[1]});
|
|
|
|
auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
|
|
|
|
std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);
|
|
|
|
|
|
|
|
auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
|
|
|
|
auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
|
|
|
|
x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
|
|
|
|
sample_grad_data[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// get d_x
|
|
|
|
auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
|
|
|
|
if (d_x != nullptr) {
|
|
|
|
auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
|
|
|
|
std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
|
|
|
|
auto d_x_matrix = EigenMatrix<T>::From(*d_x);
|
|
|
|
auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
|
|
|
|
for (int64_t i = 0; i < sample_labels->numel(); ++i) {
|
|
|
|
d_x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) +=
|
|
|
|
w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
delete sampler;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace operators
|
|
|
|
} // namespace paddle
|