|
|
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <string>
|
|
|
|
#include <thread> // NOLINT
|
|
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
|
|
|
|
#include "paddle/fluid/inference/analysis/analyzer.h"
|
|
|
|
#include "paddle/fluid/inference/analysis/ut_helper.h"
|
|
|
|
#include "paddle/fluid/inference/api/analysis_predictor.h"
|
|
|
|
#include "paddle/fluid/inference/api/helper.h"
|
|
|
|
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
|
|
|
|
#include "paddle/fluid/platform/profiler.h"
|
|
|
|
|
|
|
|
DEFINE_string(infer_model, "", "model path");
|
|
|
|
DEFINE_string(infer_data, "", "data file");
|
|
|
|
DEFINE_int32(batch_size, 1, "batch size.");
|
|
|
|
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
|
|
|
|
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
|
|
|
|
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
|
|
|
|
DEFINE_bool(use_analysis, true,
|
|
|
|
"Running the inference program in analysis mode.");
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace inference {
|
|
|
|
|
|
|
|
using contrib::AnalysisConfig;
|
|
|
|
|
|
|
|
void CompareResult(const std::vector<PaddleTensor> &outputs,
|
|
|
|
const std::vector<PaddleTensor> &ref_outputs) {
|
|
|
|
EXPECT_GT(outputs.size(), 0UL);
|
|
|
|
EXPECT_EQ(outputs.size(), ref_outputs.size());
|
|
|
|
for (size_t i = 0; i < outputs.size(); i++) {
|
|
|
|
auto &out = outputs[i];
|
|
|
|
auto &ref_out = ref_outputs[i];
|
|
|
|
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
|
|
|
|
[](int a, int b) { return a * b; });
|
|
|
|
size_t ref_size =
|
|
|
|
std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
|
|
|
|
[](int a, int b) { return a * b; });
|
|
|
|
EXPECT_GT(size, 0);
|
|
|
|
EXPECT_EQ(size, ref_size);
|
|
|
|
EXPECT_EQ(out.dtype, ref_out.dtype);
|
|
|
|
switch (out.dtype) {
|
|
|
|
case PaddleDType::INT64: {
|
|
|
|
int64_t *pdata = static_cast<int64_t *>(out.data.data());
|
|
|
|
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
|
|
|
|
for (size_t j = 0; j < size; ++j) {
|
|
|
|
EXPECT_EQ(pdata_ref[j], pdata[j]);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case PaddleDType::FLOAT32: {
|
|
|
|
float *pdata = static_cast<float *>(out.data.data());
|
|
|
|
float *pdata_ref = static_cast<float *>(ref_out.data.data());
|
|
|
|
for (size_t j = 0; j < size; ++j) {
|
|
|
|
EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
|
|
|
|
const AnalysisConfig &config, bool use_analysis = true) {
|
|
|
|
if (use_analysis) {
|
|
|
|
return CreatePaddlePredictor<contrib::AnalysisConfig,
|
|
|
|
PaddleEngineKind::kAnalysis>(config);
|
|
|
|
} else {
|
|
|
|
return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
|
|
|
|
config);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t GetSize(const PaddleTensor &out) {
|
|
|
|
return std::accumulate(out.shape.begin(), out.shape.end(), 1,
|
|
|
|
[](int a, int b) { return a * b; });
|
|
|
|
}
|
|
|
|
|
|
|
|
std::unordered_map<std::string, int> GetFuseStatis(AnalysisConfig config,
|
|
|
|
int *num_ops) {
|
|
|
|
auto predictor = CreateTestPredictor(config);
|
|
|
|
AnalysisPredictor *analysis_predictor =
|
|
|
|
dynamic_cast<AnalysisPredictor *>(predictor.get());
|
|
|
|
auto &fuse_statis = analysis_predictor->analysis_argument()
|
|
|
|
.Get<std::unordered_map<std::string, int>>(
|
|
|
|
framework::ir::kFuseStatisAttr);
|
|
|
|
for (auto &item : fuse_statis) {
|
|
|
|
LOG(INFO) << "fused " << item.first << " " << item.second;
|
|
|
|
}
|
|
|
|
int num = 0;
|
|
|
|
for (auto &node :
|
|
|
|
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
|
|
|
|
if (node->IsFunction()) {
|
|
|
|
++num;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*num_ops = num;
|
|
|
|
return fuse_statis;
|
|
|
|
}
|
|
|
|
|
|
|
|
void TestOneThreadPrediction(
|
|
|
|
const AnalysisConfig &config,
|
|
|
|
const std::vector<std::vector<PaddleTensor>> &inputs,
|
|
|
|
std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
|
|
|
|
int batch_size = FLAGS_batch_size;
|
|
|
|
int num_times = FLAGS_repeat;
|
|
|
|
auto predictor = CreateTestPredictor(config, use_analysis);
|
|
|
|
Timer timer;
|
|
|
|
timer.tic();
|
|
|
|
for (int i = 0; i < num_times; i++) {
|
|
|
|
for (size_t j = 0; j < inputs.size(); j++) {
|
|
|
|
predictor->Run(inputs[j], outputs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
PrintTime(batch_size, num_times, 1, 0, timer.toc() / num_times,
|
|
|
|
inputs.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
void TestMultiThreadPrediction(
|
|
|
|
const AnalysisConfig &config,
|
|
|
|
const std::vector<std::vector<PaddleTensor>> &inputs,
|
|
|
|
std::vector<PaddleTensor> *outputs, int num_threads,
|
|
|
|
bool use_analysis = true) {
|
|
|
|
int batch_size = FLAGS_batch_size;
|
|
|
|
int num_times = FLAGS_repeat;
|
|
|
|
std::vector<std::thread> threads;
|
|
|
|
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
|
|
|
|
// TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
|
|
|
|
// because AttentionLSTM's hard code nodeid will be damanged.
|
|
|
|
for (int tid = 0; tid < num_threads; ++tid) {
|
|
|
|
predictors.emplace_back(CreateTestPredictor(config, use_analysis));
|
|
|
|
}
|
|
|
|
for (int tid = 0; tid < num_threads; ++tid) {
|
|
|
|
threads.emplace_back([&, tid]() {
|
|
|
|
// Each thread should have local inputs and outputs.
|
|
|
|
// The inputs of each thread are all the same.
|
|
|
|
std::vector<std::vector<PaddleTensor>> inputs_tid = inputs;
|
|
|
|
std::vector<PaddleTensor> outputs_tid;
|
|
|
|
Timer timer;
|
|
|
|
timer.tic();
|
|
|
|
for (int i = 0; i < num_times; i++) {
|
|
|
|
for (size_t j = 0; j < inputs_tid.size(); j++) {
|
|
|
|
predictors[tid]->Run(inputs_tid[j], &outputs_tid);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
PrintTime(batch_size, num_times, num_threads, tid,
|
|
|
|
timer.toc() / num_times, inputs_tid.size());
|
|
|
|
});
|
|
|
|
}
|
|
|
|
for (int i = 0; i < num_threads; ++i) {
|
|
|
|
threads[i].join();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void TestPrediction(const AnalysisConfig &config,
|
|
|
|
const std::vector<std::vector<PaddleTensor>> &inputs,
|
|
|
|
std::vector<PaddleTensor> *outputs, int num_threads,
|
|
|
|
bool use_analysis = FLAGS_use_analysis) {
|
|
|
|
LOG(INFO) << "use_analysis: " << use_analysis;
|
|
|
|
if (num_threads == 1) {
|
|
|
|
TestOneThreadPrediction(config, inputs, outputs, use_analysis);
|
|
|
|
} else {
|
|
|
|
TestMultiThreadPrediction(config, inputs, outputs, num_threads,
|
|
|
|
use_analysis);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CompareNativeAndAnalysis(
|
|
|
|
const AnalysisConfig &config,
|
|
|
|
const std::vector<std::vector<PaddleTensor>> &inputs) {
|
|
|
|
std::vector<PaddleTensor> native_outputs, analysis_outputs;
|
|
|
|
TestOneThreadPrediction(config, inputs, &native_outputs, false);
|
|
|
|
TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
|
|
|
|
CompareResult(analysis_outputs, native_outputs);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace inference
|
|
|
|
} // namespace paddle
|