You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/box_coder_op.h

152 lines
6.4 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
7 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
7 years ago
namespace paddle {
namespace operators {
enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };
inline BoxCodeType GetBoxCodeType(const std::string& type) {
if (type == "encode_center_size") {
return BoxCodeType::kEncodeCenterSize;
} else if (type == "decode_center_size") {
return BoxCodeType::kDecodeCenterSize;
}
PADDLE_THROW("Not support type %s.", type);
}
template <typename T>
class BoxCoderKernel : public framework::OpKernel<T> {
public:
void EncodeCenterSize(const framework::Tensor& target_box,
const framework::Tensor& prior_box,
const framework::Tensor& prior_box_var,
T* output) const {
7 years ago
int64_t row = target_box.dims()[0];
int64_t col = prior_box.dims()[0];
int64_t len = prior_box.dims()[1];
7 years ago
auto* target_box_data = target_box.data<T>();
auto* prior_box_data = prior_box.data<T>();
auto* prior_box_var_data = prior_box_var.data<T>();
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
T prior_box_width =
prior_box_data[j * len + 2] - prior_box_data[j * len];
7 years ago
T prior_box_height =
prior_box_data[j * len + 3] - prior_box_data[j * len + 1];
7 years ago
T prior_box_center_x =
(prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
7 years ago
T prior_box_center_y =
(prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
7 years ago
T target_box_center_x =
(target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
7 years ago
T target_box_center_y =
(target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2;
7 years ago
T target_box_width =
target_box_data[i * len + 2] - target_box_data[i * len];
7 years ago
T target_box_height =
target_box_data[i * len + 3] - target_box_data[i * len + 1];
7 years ago
size_t offset = i * col * len + j * len;
7 years ago
output[offset] = (target_box_center_x - prior_box_center_x) /
prior_box_width / prior_box_var_data[j * len];
7 years ago
output[offset + 1] = (target_box_center_y - prior_box_center_y) /
prior_box_height / prior_box_var_data[j * len + 1];
7 years ago
output[offset + 2] =
std::log(std::fabs(target_box_width / prior_box_width)) /
prior_box_var_data[j * len + 2];
7 years ago
output[offset + 3] =
std::log(std::fabs(target_box_height / prior_box_height)) /
prior_box_var_data[j * len + 3];
7 years ago
}
}
}
void DecodeCenterSize(const framework::Tensor& target_box,
const framework::Tensor& prior_box,
const framework::Tensor& prior_box_var,
T* output) const {
7 years ago
int64_t row = target_box.dims()[0];
int64_t col = prior_box.dims()[0];
int64_t len = prior_box.dims()[1];
7 years ago
auto* target_box_data = target_box.data<T>();
auto* prior_box_data = prior_box.data<T>();
auto* prior_box_var_data = prior_box_var.data<T>();
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
size_t offset = i * col * len + j * len;
T prior_box_width =
prior_box_data[j * len + 2] - prior_box_data[j * len];
7 years ago
T prior_box_height =
prior_box_data[j * len + 3] - prior_box_data[j * len + 1];
7 years ago
T prior_box_center_x =
(prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
7 years ago
T prior_box_center_y =
(prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
7 years ago
T target_box_center_x = prior_box_var_data[j * len] *
target_box_data[offset] * prior_box_width +
7 years ago
prior_box_center_x;
T target_box_center_y = prior_box_var_data[j * len + 1] *
target_box_data[offset + 1] *
7 years ago
prior_box_height +
prior_box_center_y;
T target_box_width = std::exp(prior_box_var_data[j * len + 2] *
target_box_data[offset + 2]) *
7 years ago
prior_box_width;
T target_box_height = std::exp(prior_box_var_data[j * len + 3] *
target_box_data[offset + 3]) *
7 years ago
prior_box_height;
output[offset] = target_box_center_x - target_box_width / 2;
output[offset + 1] = target_box_center_y - target_box_height / 2;
output[offset + 2] = target_box_center_x + target_box_width / 2;
output[offset + 3] = target_box_center_y + target_box_height / 2;
}
}
}
void Compute(const framework::ExecutionContext& context) const override {
auto* prior_box = context.Input<framework::Tensor>("PriorBox");
auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
auto* output_box = context.Output<framework::Tensor>("OutputBox");
7 years ago
if (target_box->lod().size()) {
PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
"Only support 1 level of LoD.");
}
auto row = target_box->dims()[0];
auto col = prior_box->dims()[0];
auto len = prior_box->dims()[1];
7 years ago
output_box->mutable_data<T>({row, col, len}, context.GetPlace());
7 years ago
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
T* output = output_box->data<T>();
if (code_type == BoxCodeType::kEncodeCenterSize) {
EncodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
DecodeCenterSize(*target_box, *prior_box, *prior_box_var, output);
}
}
};
} // namespace operators
} // namespace paddle