You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/data_feeder.py

134 lines
4.8 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from py_paddle import DataProviderConverter
import collections
import paddle.trainer.PyDataProvider2 as pydp2
__all__ = ['DataFeeder']
def default_feeding_map(data_types):
reader_dict = dict()
for i, tp in enumerate(data_types):
reader_dict[tp[0]] = i
return reader_dict
class DataFeeder(DataProviderConverter):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
8 years ago
a list of mini-batch data entries. Each data entry in the list is one sample.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.
The simple usage shows below
.. code-block:: python
feeding = ['image', 'label']
data_types = enumerate_data_types_of_data_layers(topology)
feeder = DataFeeder(data_types=data_types, feeding=feeding)
minibatch_data = [([1.0, 2.0, 3.0, ...], 5)]
arg = feeder(minibatch_data)
If mini-batch data and data layers are not one to one mapping, we
could pass a dictionary to feeding parameter to represent the mapping
relationship.
.. code-block:: python
data_types = [('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
feeding = {'image':0, 'label':1}
feeder = DataFeeder(data_types=data_types, feeding=feeding)
minibatch_data = [
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ), # first sample
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ) # second sample
]
# or minibatch_data = [
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ], # first sample
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ] # second sample
# ]
arg = feeder.convert(minibatch_data)
.. note::
This module is for internal use only. Users should use the `reader`
interface.
:param data_types: A list to specify data name and type. Each item is
a tuple of (data_name, data_type).
:type data_types: list
:param feeding: A dictionary or a sequence to specify the position of each
data in the input data.
:type feeding: dict|collections.Sequence|None
"""
def __init__(self, data_types, feeding=None):
self.input_names = []
8 years ago
input_types = []
if feeding is None:
feeding = default_feeding_map(data_types)
elif isinstance(feeding, collections.Sequence):
feed_list = feeding
feeding = dict()
for i, name in enumerate(feed_list):
feeding[name] = i
elif not isinstance(feeding, dict):
raise TypeError("Feeding should be dict or sequence or None.")
self.feeding = feeding
for each in data_types:
self.input_names.append(each[0])
if not isinstance(each[1], pydp2.InputType):
raise TypeError("second item in each data_type should be an "
"InputType")
8 years ago
input_types.append(each[1])
DataProviderConverter.__init__(self, input_types)
def __len__(self):
return len(self.input_names)
def convert(self, dat, argument=None):
"""
:param dat: A list of mini-batch data. Each sample is a list or tuple
one feature or multiple features.
:type dat: list
:param argument: An Arguments object contains this mini-batch data with
one or multiple features. The Arguments definition is
in the API.
:type argument: py_paddle.swig_paddle.Arguments
"""
8 years ago
def reorder_data(data):
retv = []
for each in data:
reorder = []
for name in self.input_names:
reorder.append(each[self.feeding[name]])
8 years ago
retv.append(reorder)
return retv
8 years ago
return DataProviderConverter.convert(self, reorder_data(dat), argument)