You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
4.7 KiB
129 lines
4.7 KiB
6 years ago
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#pragma once
|
||
|
#include "paddle/fluid/framework/eigen.h"
|
||
|
#include "paddle/fluid/framework/op_registry.h"
|
||
|
#include "paddle/fluid/operators/math/blas.h"
|
||
|
#include "paddle/fluid/operators/math/math_function.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
||
|
typename IndexType = Eigen::DenseIndex>
|
||
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
||
|
using Tensor = framework::Tensor;
|
||
|
|
||
|
using Array1 = Eigen::DSizes<int64_t, 1>;
|
||
|
using Array2 = Eigen::DSizes<int64_t, 2>;
|
||
|
using IndexPair = Eigen::IndexPair<int>;
|
||
|
|
||
|
static inline void ResizeWeight(Tensor* weight_mat, const int dim) {
|
||
|
auto weight_dims = weight_mat->dims();
|
||
|
int h = 1;
|
||
|
int w = 1;
|
||
|
for (int i = 0; i < weight_dims.size(); i++) {
|
||
|
if (i <= dim) {
|
||
|
h *= weight_dims[i];
|
||
|
} else {
|
||
|
w *= weight_dims[i];
|
||
|
}
|
||
|
}
|
||
|
*weight_mat = weight_mat->Resize({h, w});
|
||
|
}
|
||
|
|
||
|
template <typename DeviceContext, typename T>
|
||
|
static inline void CalcMatrixSigmaAndNormWeight(
|
||
|
Tensor* sigma, Tensor* u, Tensor* v, Tensor* weight, const int power_iters,
|
||
|
const float eps, const framework::ExecutionContext& ctx) {
|
||
|
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
|
||
|
auto sigma_t = EigenTensor<T, 2>::From(*sigma);
|
||
|
auto weight_t = EigenTensor<T, 2>::From(*weight);
|
||
|
auto u_t = EigenTensor<T, 1>::From(*u);
|
||
|
auto v_t = EigenTensor<T, 1>::From(*v);
|
||
|
|
||
|
const int h = weight->dims()[0];
|
||
|
const int w = weight->dims()[1];
|
||
|
|
||
|
Eigen::array<int, 2> perm = {1, 0};
|
||
|
Eigen::array<IndexPair, 1> product_dims = {IndexPair(1, 0)};
|
||
|
auto weight_trans_t = weight_t.shuffle(perm);
|
||
|
LOG(ERROR) << "weight: " << weight_t;
|
||
|
LOG(ERROR) << "weight_trans: " << weight_trans_t;
|
||
|
for (int i = 0; i < power_iters; i++) {
|
||
|
v_t.device(place) = weight_trans_t.contract(u_t, product_dims);
|
||
|
LOG(ERROR) << "iter v: " << v_t;
|
||
|
auto v_t_norm =
|
||
|
v_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
|
||
|
Array1(w));
|
||
|
LOG(ERROR) << "iter v_norm: " << v_t_norm;
|
||
|
v_t.device(place) = v_t / (v_t_norm + v_t_norm.constant(eps));
|
||
|
LOG(ERROR) << "iter norm v: " << v_t;
|
||
|
u_t.device(place) = weight_t.contract(v_t, product_dims);
|
||
|
LOG(ERROR) << "iter u: " << u_t;
|
||
|
auto u_t_norm =
|
||
|
u_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
|
||
|
Array1(h));
|
||
|
u_t.device(place) = u_t / (u_t_norm + u_t_norm.constant(eps));
|
||
|
LOG(ERROR) << "iter norm u: " << u_t;
|
||
|
}
|
||
|
LOG(ERROR) << "h" << h << "w" << w;
|
||
|
LOG(ERROR) << "u: " << u_t;
|
||
|
LOG(ERROR) << "v: " << v_t;
|
||
|
LOG(ERROR) << "weight_v: " << weight_t.contract(v_t, product_dims);
|
||
|
sigma_t.device(place) = (u_t * weight_t.contract(v_t, product_dims))
|
||
|
.sum()
|
||
|
.eval()
|
||
|
.reshape(Array2(1, 1))
|
||
|
.broadcast(Array2(h, w));
|
||
|
LOG(ERROR) << "weight: " << weight_t;
|
||
|
LOG(ERROR) << "sigma: " << sigma_t;
|
||
|
weight_t.device(place) = weight_t / sigma_t;
|
||
|
}
|
||
|
|
||
|
template <typename DeviceContext, typename T>
|
||
|
class SpectralNormKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||
|
auto weight = ctx.Input<Tensor>("Weight");
|
||
|
auto u = ctx.Input<Tensor>("U");
|
||
|
auto v = ctx.Input<Tensor>("V");
|
||
|
auto out = ctx.Output<Tensor>("Out");
|
||
|
|
||
|
int dim = ctx.Attr<int>("dim");
|
||
|
int power_iters = ctx.Attr<int>("power_iters");
|
||
|
float eps = ctx.Attr<float>("eps");
|
||
|
|
||
|
Tensor weight_mat;
|
||
|
TensorCopySync(*weight, ctx.GetPlace(), &weight_mat);
|
||
|
ResizeWeight(&weight_mat, dim);
|
||
|
|
||
|
Tensor sigma;
|
||
|
sigma.mutable_data<T>(weight->dims(), ctx.GetPlace());
|
||
|
Tensor uu, vv;
|
||
|
TensorCopySync(*u, ctx.GetPlace(), &uu);
|
||
|
TensorCopySync(*v, ctx.GetPlace(), &vv);
|
||
|
CalcMatrixSigmaAndNormWeight<DeviceContext, T>(
|
||
|
&sigma, &uu, &vv, &weight_mat, power_iters, eps, ctx);
|
||
|
TensorCopySync(weight_mat, ctx.GetPlace(), out);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename DeviceContext, typename T>
|
||
|
class SpectralNormGradKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& ctx) const override {}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|