|
|
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
class UnsqueezeOpInferShape : public framework::InferShapeBase {
|
|
|
|
public:
|
|
|
|
void operator()(framework::InferShapeContext *ctx) const override {
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
|
|
"Input(X) of Unsqueeze operator should not be null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
|
|
"Output(Out) of Unsqueeze operator should not be null.");
|
|
|
|
|
|
|
|
const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
|
|
|
|
const auto &x_dims = ctx->GetInputDim("X");
|
|
|
|
// Validity Check: input tensor dims (<6).
|
|
|
|
PADDLE_ENFORCE(x_dims.size() <= 6,
|
|
|
|
"Invalid dimensions, the rank of Input(X) "
|
|
|
|
"should be in the range of [1, 6] (Eigen limit)");
|
|
|
|
auto out_dims = GetOutputShape(axes, x_dims);
|
|
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
|
|
if (x_dims[0] == out_dims[0]) {
|
|
|
|
// Only pass LoD when the first dimension of output and Input(X)
|
|
|
|
// are the same.
|
|
|
|
ctx->ShareLoD("X", "Out");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
|
|
|
|
const framework::DDim &in_dims) {
|
|
|
|
int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
|
|
|
|
int cur_output_size = in_dims.size();
|
|
|
|
std::vector<int64_t> output_shape(output_size, 0);
|
|
|
|
|
|
|
|
// Validity Check: rank range.
|
|
|
|
PADDLE_ENFORCE(output_size <= 6,
|
|
|
|
"The output tensor's rank should be less than 6.");
|
|
|
|
|
|
|
|
for (int axis : unsqz_dims) {
|
|
|
|
int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
|
|
|
|
// Vaildity Check: the axis bound
|
|
|
|
PADDLE_ENFORCE(
|
|
|
|
cur >= 0 && cur <= cur_output_size,
|
|
|
|
"The unsqueeze dims must be within range of current rank.");
|
|
|
|
// Move old axis, and insert new axis
|
|
|
|
for (int i = cur_output_size; i >= cur; --i) {
|
|
|
|
if (output_shape[i] == 1) {
|
|
|
|
// Move axis
|
|
|
|
output_shape[i + 1] = 1;
|
|
|
|
output_shape[i] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
output_shape[cur] = 1;
|
|
|
|
// Add the output size.
|
|
|
|
cur_output_size++;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make output shape
|
|
|
|
for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
|
|
|
|
if (output_shape[out_idx] == 0) {
|
|
|
|
output_shape[out_idx] = in_dims[in_idx++];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return framework::make_ddim(output_shape);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class UnsqueezeOp : public framework::OperatorBase {
|
|
|
|
public:
|
|
|
|
using OperatorBase::OperatorBase;
|
|
|
|
|
|
|
|
private:
|
|
|
|
void RunImpl(const framework::Scope &scope,
|
|
|
|
const platform::Place &place) const override {
|
|
|
|
auto &axes = Attr<std::vector<int>>("axes");
|
|
|
|
auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
|
|
|
|
auto out_dims = UnsqueezeOpInferShape::GetOutputShape(axes, x_dims);
|
|
|
|
|
|
|
|
framework::AttributeMap attrs;
|
|
|
|
attrs["shape"] = framework::vectorize2int(out_dims);
|
|
|
|
// Invoke Reshape op.
|
|
|
|
auto reshape_op = framework::OpRegistry::CreateOp(
|
|
|
|
"reshape", {{"X", {Input("X")}}, {"Shape", {}}},
|
|
|
|
{{"Out", {Output("Out")}}}, attrs);
|
|
|
|
reshape_op->Run(scope, place);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
public:
|
|
|
|
void Make() override {
|
|
|
|
AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
|
|
|
|
AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
|
|
|
|
AddAttr<std::vector<int>>("axes",
|
|
|
|
"(std::vector<int>). List of integers,"
|
|
|
|
" indicating the dimensions to be inserted")
|
|
|
|
.AddCustomChecker([](const std::vector<int> &axes) {
|
|
|
|
PADDLE_ENFORCE(!axes.empty(),
|
|
|
|
"Invalid axes, The unsqueeze axes is empty.");
|
|
|
|
// Validity Check: axes dims (<6).
|
|
|
|
PADDLE_ENFORCE(static_cast<int>(axes.size()) < 6,
|
|
|
|
"Invalid dimensions, dynamic dimensions should be "
|
|
|
|
"within [1, 6] dimensions (Eigen limit).");
|
|
|
|
// Validity Check: the range of unsqueeze aixs.
|
|
|
|
for (int axis : axes) {
|
|
|
|
PADDLE_ENFORCE(axis < 6,
|
|
|
|
"Invalid dimensions, input axis should be"
|
|
|
|
" within [1, 6] dimensions (Eigen limit).");
|
|
|
|
}
|
|
|
|
});
|
|
|
|
AddComment(R"DOC(
|
|
|
|
Unsqueeze Operator.
|
|
|
|
|
|
|
|
Insert single-dimensional entries to the shape of a tensor.
|
|
|
|
Takes one required argument axes, a list of dimensions that will be inserted.
|
|
|
|
Dimension indices in axes are as seen in the output tensor.
|
|
|
|
|
|
|
|
For example:
|
|
|
|
Given a tensor such that tensor with shape [3, 4, 5],
|
|
|
|
then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
|
|
|
|
)DOC");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class UnsqueezeGradInferShape : public framework::InferShapeBase {
|
|
|
|
public:
|
|
|
|
void operator()(framework::InferShapeContext *ctx) const override {
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
|
|
ctx->ShareLoD("X", framework::GradVarName("X"));
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class UnsqueezeGradOp : public framework::OperatorBase {
|
|
|
|
public:
|
|
|
|
using OperatorBase::OperatorBase;
|
|
|
|
|
|
|
|
private:
|
|
|
|
void RunImpl(const framework::Scope &scope,
|
|
|
|
const platform::Place &place) const override {
|
|
|
|
auto dx_name = Output(framework::GradVarName("X"));
|
|
|
|
auto dout_name = Input(framework::GradVarName("Out"));
|
|
|
|
auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
|
|
|
|
|
|
|
|
framework::AttributeMap attrs;
|
|
|
|
attrs["shape"] = framework::vectorize2int(x_dims);
|
|
|
|
|
|
|
|
auto reshape_op = framework::OpRegistry::CreateOp(
|
|
|
|
"reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
|
|
|
|
attrs);
|
|
|
|
reshape_op->Run(scope, place);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
// Tell linker to use reshape op.
|
|
|
|
USE_OP(reshape);
|
|
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
|
|
|
|
ops::UnsqueezeOpInferShape,
|
|
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
|
|
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
|
|
|
|
ops::UnsqueezeGradInferShape);
|