You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/layer.py

298 lines
10 KiB

8 years ago
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.
The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.
```python
def network_config():
img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
inference = paddle.trainer_config_helpers.fc_layer(
input=img,
size=10,
act=paddle.trainer_config_helpers.SoftmaxActivation())
cost = paddle.trainer_config_helpers.classification_cost(
input=inference,
label=paddle.trainer_config_helpers.data_layer(name="label", size=10))
proto_desc = parse_network_config(network_config)
```
When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.
The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:
```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
input=inference,
label=paddle.v2.layer.data(name="label", size=10))
parameters = paddle.v2.parameters.create(cost)
```
This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.
Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
8 years ago
8 years ago
import collections
8 years ago
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
8 years ago
8 years ago
import data_type
8 years ago
__all__ = [
'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost',
'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
8 years ago
'sum_cost', 'huber_cost', 'memory', 'embedding', 'recurrent_group'
]
8 years ago
def parse_network(*outputs):
"""
parse all output layers and then generate a model config proto.
:param outputs:
:return:
"""
def __real_func__():
context = dict()
real_output = [each.to_proto(context=context) for each in outputs]
conf_helps.outputs(real_output)
return __parse__(__real_func__)
8 years ago
class Layer(object):
def __init__(self, name, parent_layers):
assert isinstance(parent_layers, dict)
8 years ago
assert isinstance(name, basestring)
self.name = name
self.__parent_layers__ = parent_layers
8 years ago
def to_proto(self, context):
"""
function to set proto attribute
"""
kwargs = dict()
for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name],
8 years ago
collections.Sequence):
v1_layer = self.__parent_layers__[layer_name].to_proto(
8 years ago
context=context)
else:
v1_layer = map(lambda x: x.to_proto(context=context),
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
8 years ago
if self.name is None:
return self.to_proto_impl(**kwargs)
8 years ago
# memory may have the same name with some layer
if isinstance(self, MemoryV2) or isinstance(self, LayerOutputV2):
8 years ago
return self.to_proto_impl(**kwargs)
8 years ago
if self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
def to_proto_impl(self, **kwargs):
raise NotImplementedError()
def __convert_to_v2__(method_name, name_prefix, parent_names):
8 years ago
if name_prefix is not None:
wrapper = wrap_name_default(name_prefix=name_prefix)
else:
wrapper = None
class V2LayerImpl(Layer):
def __init__(self, name=None, **kwargs):
8 years ago
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
if kwargs.has_key(pname):
parent_layers[pname] = kwargs[pname]
8 years ago
for key in kwargs.keys():
if key not in parent_names:
other_kwargs[key] = kwargs[key]
super(V2LayerImpl, self).__init__(name, parent_layers)
8 years ago
self.__other_kwargs__ = other_kwargs
if wrapper is not None:
__init__ = wrapper(__init__)
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, method_name)(name=self.name, **args)
return V2LayerImpl
8 years ago
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""
class DataLayerV2(Layer):
def __init__(self, name, type, **kwargs):
assert isinstance(type, data_type.InputType)
self.type = type
8 years ago
self.__method_name__ = 'data_layer'
self.__kwargs__ = kwargs
super(DataLayerV2, self).__init__(name=name, parent_layers=dict())
def to_proto_impl(self, **kwargs):
args = dict()
args['size'] = self.type.dim
for each in kwargs:
args[each] = kwargs[each]
8 years ago
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
8 years ago
class MemoryV2(Layer):
def __init__(self, name, size, **kwargs):
self.name = name
self.size = size
self.__kwargs__ = kwargs
super(MemoryV2, self).__init__(name=name, parent_layers=dict())
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
return conf_helps.memory(name=self.name, size=self.size, **args)
class LayerOutputV2(Layer):
def __init__(self, layer_output):
assert isinstance(layer_output, conf_helps.LayerOutput)
self.layer_output = layer_output
super(LayerOutputV2, self).__init__(
name=layer_output.name, parent_layers=dict())
def to_proto_impl(self):
return self.layer_output
class RecurrentGroupV2(Layer):
def __init__(self, name, **kwargs):
self.__parent_names__ = ['input']
other_kwargs = dict()
parent_layers = dict()
for pname in self.__parent_names__:
if kwargs.has_key(pname):
parent_layers[pname] = kwargs[pname]
for key in kwargs.keys():
if key not in self.__parent_names__:
other_kwargs[key] = kwargs[key]
self.__kwargs__ = other_kwargs
super(RecurrentGroupV2, self).__init__(
name=name, parent_layers=parent_layers)
def to_proto_impl(self, **kwargs):
def in_args_converter(in_args):
if not isinstance(in_args, collections.Sequence):
in_args = [in_args]
return [LayerOutputV2(input) for input in in_args]
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
return conf_helps.recurrent_group(
name=self.name, in_args_converter=in_args_converter, **args)
data = DataLayerV2
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
'maxid_layer', name_prefix='maxid', parent_names=['input'])
classification_cost = __convert_to_v2__(
8 years ago
'classification_cost',
name_prefix='classification_cost',
parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
'regression_cost',
name_prefix='regression_cost',
parent_names=['input', 'label', 'weight'])
cross_entropy_cost = __convert_to_v2__(
'cross_entropy',
name_prefix='cross_entropy',
parent_names=['input', 'label'])
8 years ago
embedding = __convert_to_v2__(
'embedding_layer', name_prefix='embedding', parent_names=['input'])
last_seq = __convert_to_v2__(
'last_seq', name_prefix='last_seq', parent_names=['input'])
recurrent_group = RecurrentGroupV2
8 years ago
memory = MemoryV2
8 years ago
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
'cross_entropy_with_selfnorm',
name_prefix='cross_entropy_with_selfnorm',
parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
'multi_binary_label_cross_entropy',
name_prefix='multi_binary_label_cross_entropy',
parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
'rank_cost',
name_prefix='rank_cost',
parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])