|
|
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""
|
|
|
|
Before this new package paddle.v2.layer, users would need to use functions
|
|
|
|
in paddle.trainer_config_helpers.layers to configure networks.
|
|
|
|
|
|
|
|
The Old Way:
|
|
|
|
=========
|
|
|
|
This old way requires that the creation of a network be defined in a Python
|
|
|
|
function, say network_config, and that this Python function being passed to
|
|
|
|
paddle.trainer_config_helpers.parse_network_config for the creation of
|
|
|
|
protobuf message description of this network.
|
|
|
|
|
|
|
|
```python
|
|
|
|
def network_config():
|
|
|
|
img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
|
|
|
|
inference = paddle.trainer_config_helpers.fc_layer(
|
|
|
|
input=img,
|
|
|
|
size=10,
|
|
|
|
act=paddle.trainer_config_helpers.SoftmaxActivation())
|
|
|
|
cost = paddle.trainer_config_helpers.classification_cost(
|
|
|
|
input=inference,
|
|
|
|
label=paddle.trainer_config_helpers.data_layer(name="label", size=10))
|
|
|
|
|
|
|
|
proto_desc = parse_network_config(network_config)
|
|
|
|
```
|
|
|
|
|
|
|
|
When parse_network_config executes network_config, those layer definition
|
|
|
|
functions like data_layer and fc_layer would change some Python global variables,
|
|
|
|
so that after the execution, parse_network_config could collect information from
|
|
|
|
these global variables and generates the protobuf message.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The New Way:
|
|
|
|
=========
|
|
|
|
In this PR, we define a function in paddle.v2.layer which creates a Python
|
|
|
|
class for each layer creation function in paddle.trainer_config_helpers.layers.
|
|
|
|
Users can use create a network as follows:
|
|
|
|
|
|
|
|
```python
|
|
|
|
img = paddle.v2.layer.data(name="pixel", size=784)
|
|
|
|
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
|
|
|
|
cost = paddle.v2.layer.classification(
|
|
|
|
input=inference,
|
|
|
|
label=paddle.v2.layer.data(name="label", size=10))
|
|
|
|
|
|
|
|
parameters = paddle.v2.parameters.create(cost)
|
|
|
|
```
|
|
|
|
|
|
|
|
This new way doesn't require those invocations to layer definition functions
|
|
|
|
to be in a Python function but could be anywhere.
|
|
|
|
|
|
|
|
Also, the creation of a protobuf message is hidden in the invocation of
|
|
|
|
paddle.v2.parameters.create, no longer exposed to users.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import collections
|
|
|
|
|
|
|
|
import paddle.trainer_config_helpers as conf_helps
|
|
|
|
from paddle.trainer_config_helpers.config_parser_utils import \
|
|
|
|
parse_network_config as __parse__
|
|
|
|
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
|
|
|
|
|
|
|
|
import data_type
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
|
|
|
|
'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost',
|
|
|
|
'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
|
|
|
|
'sum_cost', 'huber_cost', 'memory', 'embedding', 'recurrent_group'
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def parse_network(*outputs):
|
|
|
|
"""
|
|
|
|
parse all output layers and then generate a model config proto.
|
|
|
|
:param outputs:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __real_func__():
|
|
|
|
context = dict()
|
|
|
|
real_output = [each.to_proto(context=context) for each in outputs]
|
|
|
|
conf_helps.outputs(real_output)
|
|
|
|
|
|
|
|
return __parse__(__real_func__)
|
|
|
|
|
|
|
|
|
|
|
|
class Layer(object):
|
|
|
|
def __init__(self, name, parent_layers):
|
|
|
|
assert isinstance(parent_layers, dict)
|
|
|
|
assert isinstance(name, basestring)
|
|
|
|
self.name = name
|
|
|
|
self.__parent_layers__ = parent_layers
|
|
|
|
|
|
|
|
def to_proto(self, context):
|
|
|
|
"""
|
|
|
|
function to set proto attribute
|
|
|
|
"""
|
|
|
|
kwargs = dict()
|
|
|
|
for layer_name in self.__parent_layers__:
|
|
|
|
if not isinstance(self.__parent_layers__[layer_name],
|
|
|
|
collections.Sequence):
|
|
|
|
v1_layer = self.__parent_layers__[layer_name].to_proto(
|
|
|
|
context=context)
|
|
|
|
else:
|
|
|
|
v1_layer = map(lambda x: x.to_proto(context=context),
|
|
|
|
self.__parent_layers__[layer_name])
|
|
|
|
kwargs[layer_name] = v1_layer
|
|
|
|
|
|
|
|
if self.name is None:
|
|
|
|
return self.to_proto_impl(**kwargs)
|
|
|
|
|
|
|
|
# memory may have the same name with some layer
|
|
|
|
if isinstance(self, MemoryV2) or isinstance(self, LayerOutputV2):
|
|
|
|
return self.to_proto_impl(**kwargs)
|
|
|
|
|
|
|
|
if self.name not in context:
|
|
|
|
context[self.name] = self.to_proto_impl(**kwargs)
|
|
|
|
return context[self.name]
|
|
|
|
|
|
|
|
def to_proto_impl(self, **kwargs):
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
|
|
def __convert_to_v2__(method_name, name_prefix, parent_names):
|
|
|
|
if name_prefix is not None:
|
|
|
|
wrapper = wrap_name_default(name_prefix=name_prefix)
|
|
|
|
else:
|
|
|
|
wrapper = None
|
|
|
|
|
|
|
|
class V2LayerImpl(Layer):
|
|
|
|
def __init__(self, name=None, **kwargs):
|
|
|
|
parent_layers = dict()
|
|
|
|
other_kwargs = dict()
|
|
|
|
for pname in parent_names:
|
|
|
|
if kwargs.has_key(pname):
|
|
|
|
parent_layers[pname] = kwargs[pname]
|
|
|
|
|
|
|
|
for key in kwargs.keys():
|
|
|
|
if key not in parent_names:
|
|
|
|
other_kwargs[key] = kwargs[key]
|
|
|
|
|
|
|
|
super(V2LayerImpl, self).__init__(name, parent_layers)
|
|
|
|
self.__other_kwargs__ = other_kwargs
|
|
|
|
|
|
|
|
if wrapper is not None:
|
|
|
|
__init__ = wrapper(__init__)
|
|
|
|
|
|
|
|
def to_proto_impl(self, **kwargs):
|
|
|
|
args = dict()
|
|
|
|
for each in kwargs:
|
|
|
|
args[each] = kwargs[each]
|
|
|
|
for each in self.__other_kwargs__:
|
|
|
|
args[each] = self.__other_kwargs__[each]
|
|
|
|
return getattr(conf_helps, method_name)(name=self.name, **args)
|
|
|
|
|
|
|
|
return V2LayerImpl
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
|
|
|
|
So we also need to implement some special LayerV2.
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
class DataLayerV2(Layer):
|
|
|
|
def __init__(self, name, type, **kwargs):
|
|
|
|
assert isinstance(type, data_type.InputType)
|
|
|
|
|
|
|
|
self.type = type
|
|
|
|
self.__method_name__ = 'data_layer'
|
|
|
|
self.__kwargs__ = kwargs
|
|
|
|
|
|
|
|
super(DataLayerV2, self).__init__(name=name, parent_layers=dict())
|
|
|
|
|
|
|
|
def to_proto_impl(self, **kwargs):
|
|
|
|
args = dict()
|
|
|
|
args['size'] = self.type.dim
|
|
|
|
for each in kwargs:
|
|
|
|
args[each] = kwargs[each]
|
|
|
|
for each in self.__kwargs__:
|
|
|
|
args[each] = self.__kwargs__[each]
|
|
|
|
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
|
|
|
|
|
|
|
|
|
|
|
|
class MemoryV2(Layer):
|
|
|
|
def __init__(self, name, size, **kwargs):
|
|
|
|
self.name = name
|
|
|
|
self.size = size
|
|
|
|
self.__kwargs__ = kwargs
|
|
|
|
super(MemoryV2, self).__init__(name=name, parent_layers=dict())
|
|
|
|
|
|
|
|
def to_proto_impl(self, **kwargs):
|
|
|
|
args = dict()
|
|
|
|
for each in kwargs:
|
|
|
|
args[each] = kwargs[each]
|
|
|
|
for each in self.__kwargs__:
|
|
|
|
args[each] = self.__kwargs__[each]
|
|
|
|
return conf_helps.memory(name=self.name, size=self.size, **args)
|
|
|
|
|
|
|
|
|
|
|
|
class LayerOutputV2(Layer):
|
|
|
|
def __init__(self, layer_output):
|
|
|
|
assert isinstance(layer_output, conf_helps.LayerOutput)
|
|
|
|
self.layer_output = layer_output
|
|
|
|
super(LayerOutputV2, self).__init__(
|
|
|
|
name=layer_output.name, parent_layers=dict())
|
|
|
|
|
|
|
|
def to_proto_impl(self):
|
|
|
|
return self.layer_output
|
|
|
|
|
|
|
|
|
|
|
|
class RecurrentGroupV2(Layer):
|
|
|
|
def __init__(self, name, **kwargs):
|
|
|
|
self.__parent_names__ = ['input']
|
|
|
|
other_kwargs = dict()
|
|
|
|
parent_layers = dict()
|
|
|
|
for pname in self.__parent_names__:
|
|
|
|
if kwargs.has_key(pname):
|
|
|
|
parent_layers[pname] = kwargs[pname]
|
|
|
|
for key in kwargs.keys():
|
|
|
|
if key not in self.__parent_names__:
|
|
|
|
other_kwargs[key] = kwargs[key]
|
|
|
|
self.__kwargs__ = other_kwargs
|
|
|
|
|
|
|
|
super(RecurrentGroupV2, self).__init__(
|
|
|
|
name=name, parent_layers=parent_layers)
|
|
|
|
|
|
|
|
def to_proto_impl(self, **kwargs):
|
|
|
|
def in_args_converter(in_args):
|
|
|
|
if not isinstance(in_args, collections.Sequence):
|
|
|
|
in_args = [in_args]
|
|
|
|
return [LayerOutputV2(input) for input in in_args]
|
|
|
|
|
|
|
|
args = dict()
|
|
|
|
for each in kwargs:
|
|
|
|
args[each] = kwargs[each]
|
|
|
|
for each in self.__kwargs__:
|
|
|
|
args[each] = self.__kwargs__[each]
|
|
|
|
return conf_helps.recurrent_group(
|
|
|
|
name=self.name, in_args_converter=in_args_converter, **args)
|
|
|
|
|
|
|
|
|
|
|
|
data = DataLayerV2
|
|
|
|
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
|
|
|
|
max_id = __convert_to_v2__(
|
|
|
|
'maxid_layer', name_prefix='maxid', parent_names=['input'])
|
|
|
|
classification_cost = __convert_to_v2__(
|
|
|
|
'classification_cost',
|
|
|
|
name_prefix='classification_cost',
|
|
|
|
parent_names=['input', 'label', 'weight'])
|
|
|
|
regression_cost = __convert_to_v2__(
|
|
|
|
'regression_cost',
|
|
|
|
name_prefix='regression_cost',
|
|
|
|
parent_names=['input', 'label', 'weight'])
|
|
|
|
cross_entropy_cost = __convert_to_v2__(
|
|
|
|
'cross_entropy',
|
|
|
|
name_prefix='cross_entropy',
|
|
|
|
parent_names=['input', 'label'])
|
|
|
|
embedding = __convert_to_v2__(
|
|
|
|
'embedding_layer', name_prefix='embedding', parent_names=['input'])
|
|
|
|
last_seq = __convert_to_v2__(
|
|
|
|
'last_seq', name_prefix='last_seq', parent_names=['input'])
|
|
|
|
recurrent_group = RecurrentGroupV2
|
|
|
|
memory = MemoryV2
|
|
|
|
|
|
|
|
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
|
|
|
|
'cross_entropy_with_selfnorm',
|
|
|
|
name_prefix='cross_entropy_with_selfnorm',
|
|
|
|
parent_names=['input', 'label'])
|
|
|
|
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
|
|
|
|
'multi_binary_label_cross_entropy',
|
|
|
|
name_prefix='multi_binary_label_cross_entropy',
|
|
|
|
parent_names=['input', 'label'])
|
|
|
|
rank_cost = __convert_to_v2__(
|
|
|
|
'rank_cost',
|
|
|
|
name_prefix='rank_cost',
|
|
|
|
parent_names=['left', 'right', 'label', 'weight'])
|
|
|
|
lambda_cost = __convert_to_v2__(
|
|
|
|
'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
|
|
|
|
sum_cost = __convert_to_v2__(
|
|
|
|
'sum_cost', name_prefix='sum_cost', parent_names=['input'])
|
|
|
|
huber_cost = __convert_to_v2__(
|
|
|
|
'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
|