You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
2.7 KiB
80 lines
2.7 KiB
8 years ago
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from paddle.trainer_config_helpers import *
|
||
|
|
||
|
is_predict = get_config_arg("is_predict", bool, False)
|
||
|
|
||
|
####################Data Configuration ##################
|
||
|
|
||
|
if not is_predict:
|
||
|
data_dir = './data/'
|
||
|
define_py_data_sources2(
|
||
|
train_list=data_dir + 'train.list',
|
||
|
test_list=data_dir + 'test.list',
|
||
|
module='mnist_provider',
|
||
|
obj='process')
|
||
|
|
||
|
######################Algorithm Configuration #############
|
||
|
settings(batch_size=50, learning_rate=0.001, learning_method=AdamOptimizer())
|
||
|
|
||
|
#######################Network Configuration #############
|
||
|
|
||
|
data_size = 1 * 28 * 28
|
||
|
label_size = 10
|
||
|
img = data_layer(name='pixel', size=data_size)
|
||
|
|
||
|
|
||
|
# light cnn
|
||
|
# A shallower cnn model: [CNN, BN, ReLU, Max-Pooling] x4 + FC x1
|
||
|
# Easier to train for mnist dataset and quite efficient
|
||
|
# Final performance is close to deeper ones on tasks such as digital and character classification
|
||
|
def light_cnn(input_image, num_channels, num_classes):
|
||
|
def __light__(ipt,
|
||
|
num_filter=128,
|
||
|
times=1,
|
||
|
conv_filter_size=3,
|
||
|
dropouts=0,
|
||
|
num_channels_=None):
|
||
|
return img_conv_group(
|
||
|
input=ipt,
|
||
|
num_channels=num_channels_,
|
||
|
pool_size=2,
|
||
|
pool_stride=2,
|
||
|
conv_padding=0,
|
||
|
conv_num_filter=[num_filter] * times,
|
||
|
conv_filter_size=conv_filter_size,
|
||
|
conv_act=ReluActivation(),
|
||
|
conv_with_batchnorm=True,
|
||
|
conv_batchnorm_drop_rate=dropouts,
|
||
|
pool_type=MaxPooling())
|
||
|
|
||
|
tmp = __light__(input_image, num_filter=128, num_channels_=num_channels)
|
||
|
tmp = __light__(tmp, num_filter=128)
|
||
|
tmp = __light__(tmp, num_filter=128)
|
||
|
tmp = __light__(tmp, num_filter=128, conv_filter_size=1)
|
||
|
|
||
|
tmp = fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())
|
||
|
return tmp
|
||
|
|
||
|
|
||
|
predict = light_cnn(input_image=img, num_channels=1, num_classes=label_size)
|
||
|
|
||
|
if not is_predict:
|
||
|
lbl = data_layer(name="label", size=label_size)
|
||
|
inputs(img, lbl)
|
||
|
outputs(classification_cost(input=predict, label=lbl))
|
||
|
else:
|
||
|
outputs(predict)
|