|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#include "paddle/operators/math/im2col.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace math {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* im = [input_channels, input_height, input_width]
|
|
|
|
* col =
|
|
|
|
* [input_channels, filter_height, filter_width, output_height, output_width]
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
class Im2ColFunctor<kCFO, platform::CPUPlace, T> {
|
|
|
|
public:
|
|
|
|
void operator()(const framework::Tensor& im, framework::Tensor& col,
|
|
|
|
int stride_height, int stride_width, int padding_height,
|
|
|
|
int padding_width, platform::DeviceContext* context) {
|
|
|
|
PADDLE_ENFORCE(im.dims().size() == 3);
|
|
|
|
PADDLE_ENFORCE(col.dims().size() == 5);
|
|
|
|
|
|
|
|
int input_channels = im.dims()[0];
|
|
|
|
int input_height = im.dims()[1];
|
|
|
|
int input_width = im.dims()[2];
|
|
|
|
int filter_height = col.dims()[1];
|
|
|
|
int filter_width = col.dims()[2];
|
|
|
|
int output_height = col.dims()[3];
|
|
|
|
int output_width = col.dims()[4];
|
|
|
|
int channels_col = input_channels * filter_height * filter_width;
|
|
|
|
|
|
|
|
const T* im_data = im.data<T>();
|
|
|
|
T* col_data = col.data<T>();
|
|
|
|
|
|
|
|
for (int c = 0; c < channels_col; ++c) {
|
|
|
|
int w_offset = c % filter_width;
|
|
|
|
int h_offset = (c / filter_width) % filter_height;
|
|
|
|
int c_im = c / filter_width / filter_height;
|
|
|
|
for (int h = 0; h < output_height; ++h) {
|
|
|
|
for (int w = 0; w < output_width; ++w) {
|
|
|
|
int im_row_idx = h * stride_height + h_offset;
|
|
|
|
int im_col_idx = w * stride_width + w_offset;
|
|
|
|
if ((im_row_idx - padding_height) < 0 ||
|
|
|
|
(im_row_idx - padding_height) >= input_height ||
|
|
|
|
(im_col_idx - padding_width) < 0 ||
|
|
|
|
(im_col_idx - padding_width) >= input_width) {
|
|
|
|
col_data[(c * output_height + h) * output_width + w] = T(0);
|
|
|
|
} else {
|
|
|
|
im_row_idx += c_im * input_height - padding_height;
|
|
|
|
im_col_idx -= padding_width;
|
|
|
|
col_data[(c * output_height + h) * output_width + w] =
|
|
|
|
im_data[im_row_idx * input_width + im_col_idx];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* im = [input_channels, input_height, input_width]
|
|
|
|
* col =
|
|
|
|
* [input_channels, filter_height, filter_width, output_height, output_width]
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
class Col2ImFunctor<kCFO, platform::CPUPlace, T> {
|
|
|
|
public:
|
|
|
|
void operator()(framework::Tensor& im, const framework::Tensor& col,
|
|
|
|
int stride_height, int stride_width, int padding_height,
|
|
|
|
int padding_width, platform::DeviceContext* context) {
|
|
|
|
PADDLE_ENFORCE(im.dims().size() == 3);
|
|
|
|
PADDLE_ENFORCE(col.dims().size() == 5);
|
|
|
|
int input_channels = im.dims()[0];
|
|
|
|
int input_height = im.dims()[1];
|
|
|
|
int input_width = im.dims()[2];
|
|
|
|
int filter_height = col.dims()[1];
|
|
|
|
int filter_width = col.dims()[2];
|
|
|
|
int output_height = col.dims()[3];
|
|
|
|
int output_width = col.dims()[4];
|
|
|
|
int channels_col = input_channels * filter_height * filter_width;
|
|
|
|
|
|
|
|
T* im_data = im.data<T>();
|
|
|
|
const T* col_data = col.data<T>();
|
|
|
|
|
|
|
|
for (int c = 0; c < channels_col; ++c) {
|
|
|
|
int w_offset = c % filter_width;
|
|
|
|
int h_offset = (c / filter_width) % filter_height;
|
|
|
|
int c_im = c / filter_width / filter_height;
|
|
|
|
for (int h = 0; h < output_height; ++h) {
|
|
|
|
for (int w = 0; w < output_width; ++w) {
|
|
|
|
int im_row_idx = h * stride_height + h_offset;
|
|
|
|
int im_col_idx = w * stride_width + w_offset;
|
|
|
|
if ((im_row_idx - padding_height) >= 0 &&
|
|
|
|
(im_row_idx - padding_height) < input_height &&
|
|
|
|
(im_col_idx - padding_width) >= 0 &&
|
|
|
|
(im_col_idx - padding_width) < input_width) {
|
|
|
|
im_row_idx += c_im * input_height - padding_height;
|
|
|
|
im_col_idx -= padding_width;
|
|
|
|
im_data[im_row_idx * input_width + im_col_idx] +=
|
|
|
|
col_data[(c * output_height + h) * output_width + w];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template class Im2ColFunctor<kCFO, platform::CPUPlace, float>;
|
|
|
|
template class Im2ColFunctor<kCFO, platform::CPUPlace, double>;
|
|
|
|
template class Col2ImFunctor<kCFO, platform::CPUPlace, float>;
|
|
|
|
template class Col2ImFunctor<kCFO, platform::CPUPlace, double>;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* im = [input_channels, input_height, input_width]
|
|
|
|
* col =
|
|
|
|
* [output_height, output_width, input_channels, filter_height, filter_width]
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
class Im2ColFunctor<kOCF, platform::CPUPlace, T> {
|
|
|
|
public:
|
|
|
|
void operator()(const framework::Tensor& im, framework::Tensor& col,
|
|
|
|
int stride_height, int stride_width, int padding_height,
|
|
|
|
int padding_width, platform::DeviceContext* context) {
|
|
|
|
PADDLE_ENFORCE(im.dims().size() == 3);
|
|
|
|
PADDLE_ENFORCE(col.dims().size() == 5);
|
|
|
|
int input_channels = im.dims()[0];
|
|
|
|
int input_height = im.dims()[1];
|
|
|
|
int input_width = im.dims()[2];
|
|
|
|
int filter_height = col.dims()[3];
|
|
|
|
int filter_width = col.dims()[4];
|
|
|
|
int output_height = col.dims()[0];
|
|
|
|
int output_width = col.dims()[1];
|
|
|
|
|
|
|
|
const T* im_data = im.data<T>();
|
|
|
|
T* col_data = col.data<T>();
|
|
|
|
|
|
|
|
for (int col_row_idx = 0; col_row_idx < output_height; ++col_row_idx) {
|
|
|
|
for (int col_col_idx = 0; col_col_idx < output_width; ++col_col_idx) {
|
|
|
|
for (int channel = 0; channel < input_channels; ++channel) {
|
|
|
|
for (int filter_row_idx = 0; filter_row_idx < filter_height;
|
|
|
|
++filter_row_idx) {
|
|
|
|
for (int filter_col_idx = 0; filter_col_idx < filter_width;
|
|
|
|
++filter_col_idx) {
|
|
|
|
int im_row_offset =
|
|
|
|
col_row_idx * stride_height + filter_row_idx - padding_height;
|
|
|
|
int im_col_offset =
|
|
|
|
col_col_idx * stride_width + filter_col_idx - padding_width;
|
|
|
|
int col_offset = (((col_row_idx * output_width + col_col_idx) *
|
|
|
|
input_channels +
|
|
|
|
channel) *
|
|
|
|
filter_height +
|
|
|
|
filter_row_idx) *
|
|
|
|
filter_width +
|
|
|
|
filter_col_idx;
|
|
|
|
if (im_row_offset < 0 || im_row_offset >= input_height ||
|
|
|
|
im_col_offset < 0 || im_col_offset >= input_width) {
|
|
|
|
col_data[col_offset] = T(0);
|
|
|
|
} else {
|
|
|
|
int im_offset =
|
|
|
|
(channel * input_height + im_row_offset) * input_width +
|
|
|
|
im_col_offset;
|
|
|
|
col_data[col_offset] = im_data[im_offset];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* im = [input_channels, input_height, input_width]
|
|
|
|
* col =
|
|
|
|
* [output_height, output_width, input_channels, filter_height, filter_width]
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
class Col2ImFunctor<kOCF, platform::CPUPlace, T> {
|
|
|
|
public:
|
|
|
|
void operator()(framework::Tensor& im, const framework::Tensor& col,
|
|
|
|
int stride_height, int stride_width, int padding_height,
|
|
|
|
int padding_width, platform::DeviceContext* context) {
|
|
|
|
PADDLE_ENFORCE(im.dims().size() == 3);
|
|
|
|
PADDLE_ENFORCE(col.dims().size() == 5);
|
|
|
|
int input_channels = im.dims()[0];
|
|
|
|
int input_height = im.dims()[1];
|
|
|
|
int input_width = im.dims()[2];
|
|
|
|
int filter_height = col.dims()[3];
|
|
|
|
int filter_width = col.dims()[4];
|
|
|
|
int output_height = col.dims()[0];
|
|
|
|
int output_width = col.dims()[1];
|
|
|
|
|
|
|
|
T* im_data = im.data<T>();
|
|
|
|
const T* col_data = col.data<T>();
|
|
|
|
|
|
|
|
for (int col_row_idx = 0; col_row_idx < output_height; ++col_row_idx) {
|
|
|
|
for (int col_col_idx = 0; col_col_idx < output_width; ++col_col_idx) {
|
|
|
|
for (int channel = 0; channel < input_channels; ++channel) {
|
|
|
|
for (int filter_row_idx = 0; filter_row_idx < filter_height;
|
|
|
|
++filter_row_idx) {
|
|
|
|
for (int filter_col_idx = 0; filter_col_idx < filter_width;
|
|
|
|
++filter_col_idx) {
|
|
|
|
int im_row_offset =
|
|
|
|
col_row_idx * stride_height + filter_row_idx - padding_height;
|
|
|
|
int im_col_offset =
|
|
|
|
col_col_idx * stride_width + filter_col_idx - padding_width;
|
|
|
|
int col_offset = (((col_row_idx * output_width + col_col_idx) *
|
|
|
|
input_channels +
|
|
|
|
channel) *
|
|
|
|
filter_height +
|
|
|
|
filter_row_idx) *
|
|
|
|
filter_width +
|
|
|
|
filter_col_idx;
|
|
|
|
if (im_row_offset >= 0 && im_row_offset < input_height &&
|
|
|
|
im_col_offset >= 0 && im_col_offset < input_width) {
|
|
|
|
int im_offset =
|
|
|
|
(channel * input_height + im_row_offset) * input_width +
|
|
|
|
im_col_offset;
|
|
|
|
im_data[im_offset] += col_data[col_offset];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template class Im2ColFunctor<kOCF, platform::CPUPlace, float>;
|
|
|
|
template class Im2ColFunctor<kOCF, platform::CPUPlace, double>;
|
|
|
|
template class Col2ImFunctor<kOCF, platform::CPUPlace, float>;
|
|
|
|
template class Col2ImFunctor<kOCF, platform::CPUPlace, double>;
|
|
|
|
|
|
|
|
} // namespace math
|
|
|
|
} // namespace paddle
|