parent
47eb869197
commit
6efbe2ff43
@ -0,0 +1,215 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "Im2Col.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/*
|
||||
* imShape = [inputChannels, inputHeight, inputWidth]
|
||||
* colShape =
|
||||
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
|
||||
*/
|
||||
template <class T>
|
||||
class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, T> {
|
||||
public:
|
||||
void operator()(const T* imData, const TensorShape& imShape, T* colData,
|
||||
const TensorShape& colShape, int strideHeight,
|
||||
int strideWidth, int paddingHeight, int paddingWidth) {
|
||||
int inputChannels = imShape[0];
|
||||
int inputHeight = imShape[1];
|
||||
int inputWidth = imShape[2];
|
||||
int filterHeight = colShape[1];
|
||||
int filterWidth = colShape[2];
|
||||
int outputHeight = colShape[3];
|
||||
int outputWidth = colShape[4];
|
||||
int channelsCol = inputChannels * filterHeight * filterWidth;
|
||||
|
||||
for (int c = 0; c < channelsCol; ++c) {
|
||||
int wOffset = c % filterWidth;
|
||||
int hOffset = (c / filterWidth) % filterHeight;
|
||||
int c_im = c / filterWidth / filterHeight;
|
||||
for (int h = 0; h < outputHeight; ++h) {
|
||||
for (int w = 0; w < outputWidth; ++w) {
|
||||
int imRowIdx = h * strideHeight + hOffset;
|
||||
int imColIdx = w * strideWidth + wOffset;
|
||||
if ((imRowIdx - paddingHeight) < 0 ||
|
||||
(imRowIdx - paddingHeight) >= inputHeight ||
|
||||
(imColIdx - paddingWidth) < 0 ||
|
||||
(imColIdx - paddingWidth) >= inputWidth) {
|
||||
colData[(c * outputHeight + h) * outputWidth + w] = T(0);
|
||||
} else {
|
||||
imRowIdx += c_im * inputHeight - paddingHeight;
|
||||
imColIdx -= paddingWidth;
|
||||
colData[(c * outputHeight + h) * outputWidth + w] =
|
||||
imData[imRowIdx * inputWidth + imColIdx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* imShape = [inputChannels, inputHeight, inputWidth]
|
||||
* colShape =
|
||||
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
|
||||
*/
|
||||
template <class T>
|
||||
class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, T> {
|
||||
public:
|
||||
void operator()(T* imData, const TensorShape& imShape, const T* colData,
|
||||
const TensorShape& colShape, int strideHeight,
|
||||
int strideWidth, int paddingHeight, int paddingWidth) {
|
||||
int inputChannels = imShape[0];
|
||||
int inputHeight = imShape[1];
|
||||
int inputWidth = imShape[2];
|
||||
int filterHeight = colShape[1];
|
||||
int filterWidth = colShape[2];
|
||||
int outputHeight = colShape[3];
|
||||
int outputWidth = colShape[4];
|
||||
int channelsCol = inputChannels * filterHeight * filterWidth;
|
||||
|
||||
for (int c = 0; c < channelsCol; ++c) {
|
||||
int wOffset = c % filterWidth;
|
||||
int hOffset = (c / filterWidth) % filterHeight;
|
||||
int c_im = c / filterWidth / filterHeight;
|
||||
for (int h = 0; h < outputHeight; ++h) {
|
||||
for (int w = 0; w < outputWidth; ++w) {
|
||||
int imRowIdx = h * strideHeight + hOffset;
|
||||
int imColIdx = w * strideWidth + wOffset;
|
||||
if ((imRowIdx - paddingHeight) >= 0 &&
|
||||
(imRowIdx - paddingHeight) < inputHeight &&
|
||||
(imColIdx - paddingWidth) >= 0 &&
|
||||
(imColIdx - paddingWidth) < inputWidth) {
|
||||
imRowIdx += c_im * inputHeight - paddingHeight;
|
||||
imColIdx -= paddingWidth;
|
||||
imData[imRowIdx * inputWidth + imColIdx] +=
|
||||
colData[(c * outputHeight + h) * outputWidth + w];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, float>;
|
||||
template class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, double>;
|
||||
template class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, float>;
|
||||
template class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, double>;
|
||||
|
||||
/*
|
||||
* imShape = [inputChannels, inputHeight, inputWidth]
|
||||
* colShape =
|
||||
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
|
||||
*/
|
||||
template <class T>
|
||||
class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, T> {
|
||||
public:
|
||||
void operator()(const T* imData, const TensorShape& imShape, T* colData,
|
||||
const TensorShape& colShape, int strideHeight,
|
||||
int strideWidth, int paddingHeight, int paddingWidth) {
|
||||
int inputChannels = imShape[0];
|
||||
int inputHeight = imShape[1];
|
||||
int inputWidth = imShape[2];
|
||||
int filterHeight = colShape[3];
|
||||
int filterWidth = colShape[4];
|
||||
int outputHeight = colShape[0];
|
||||
int outputWidth = colShape[1];
|
||||
for (int outputH = 0; outputH < outputHeight; ++outputH) {
|
||||
for (int outputW = 0; outputW < outputWidth; ++outputW) {
|
||||
for (int channel = 0; channel < inputChannels; ++channel) {
|
||||
for (int filterH = 0; filterH < filterHeight; ++filterH) {
|
||||
for (int filterW = 0; filterW < filterWidth; ++filterW) {
|
||||
int imRowOffset =
|
||||
outputH * strideHeight + filterH - paddingHeight;
|
||||
int imColOffset = outputW * strideWidth + filterW - paddingWidth;
|
||||
int colDataOffset =
|
||||
(((outputH * outputWidth + outputW) * inputChannels +
|
||||
channel) *
|
||||
filterHeight +
|
||||
filterH) *
|
||||
filterWidth +
|
||||
filterW;
|
||||
if (imRowOffset < 0 || imRowOffset >= inputHeight ||
|
||||
imColOffset < 0 || imColOffset >= inputWidth) {
|
||||
colData[colDataOffset] = float(0);
|
||||
} else {
|
||||
int imDataOffset =
|
||||
(channel * inputHeight + imRowOffset) * inputWidth +
|
||||
imColOffset;
|
||||
colData[colDataOffset] = imData[imDataOffset];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* imShape = [inputChannels, inputHeight, inputWidth]
|
||||
* colShape =
|
||||
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
|
||||
*/
|
||||
template <class T>
|
||||
class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, T> {
|
||||
public:
|
||||
void operator()(T* imData, const TensorShape& imShape, const T* colData,
|
||||
const TensorShape& colShape, int strideHeight,
|
||||
int strideWidth, int paddingHeight, int paddingWidth) {
|
||||
int inputChannels = imShape[0];
|
||||
int inputHeight = imShape[1];
|
||||
int inputWidth = imShape[2];
|
||||
int filterHeight = colShape[3];
|
||||
int filterWidth = colShape[4];
|
||||
int outputHeight = colShape[0];
|
||||
int outputWidth = colShape[1];
|
||||
for (int outputH = 0; outputH < outputHeight; ++outputH) {
|
||||
for (int outputW = 0; outputW < outputWidth; ++outputW) {
|
||||
for (int channel = 0; channel < inputChannels; ++channel) {
|
||||
for (int filterH = 0; filterH < filterHeight; ++filterH) {
|
||||
for (int filterW = 0; filterW < filterWidth; ++filterW) {
|
||||
int imRowOffset =
|
||||
outputH * strideHeight + filterH - paddingHeight;
|
||||
int imColOffset = outputW * strideWidth + filterW - paddingWidth;
|
||||
int colDataOffset =
|
||||
(((outputH * outputWidth + outputW) * inputChannels +
|
||||
channel) *
|
||||
filterHeight +
|
||||
filterH) *
|
||||
filterWidth +
|
||||
filterW;
|
||||
if (imRowOffset >= 0 && imRowOffset < inputHeight &&
|
||||
imColOffset >= 0 && imColOffset < inputWidth) {
|
||||
int imDataOffset =
|
||||
(channel * inputHeight + imRowOffset) * inputWidth +
|
||||
imColOffset;
|
||||
imData[imDataOffset] += colData[colDataOffset];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, float>;
|
||||
template class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, double>;
|
||||
template class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, float>;
|
||||
template class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, double>;
|
||||
|
||||
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,86 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "TensorShape.h"
|
||||
#include "TensorType.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/* The storage format of the coldata in the Im2ColFunctor and Col2ImFunctor. */
|
||||
enum ColFormat { kCFO = 0, kOCF = 1 };
|
||||
|
||||
/*
|
||||
* \brief Converts the image data of three dimensions(CHW) into a colData of
|
||||
* five dimensions in the Im2ColFunctor calculation,
|
||||
* And in the Col2ImFunctor calculation, it is reversed.
|
||||
*
|
||||
* \param imData Image data.
|
||||
* \param imShape The shape of imData,
|
||||
* [inputChannels, inputHeight, inputWidth].
|
||||
* \param colData Column data.
|
||||
* \param colShape The shape of colData.
|
||||
*
|
||||
* If the template argument Format is kCFO, the shape of colData is:
|
||||
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
|
||||
* So, it is easy to reshape into a convolution matrix for convolution
|
||||
* calculation based on matrix multiplication.
|
||||
* The shape of convolution matrix is [height, width], where the height is equal
|
||||
* inputChannels * filterHeight * filterWidth, and the width is equal
|
||||
* outputHeight * outputWidth.
|
||||
*
|
||||
* Reshape:
|
||||
* shape of colData shape of convolution matrix
|
||||
* [inputChannels,
|
||||
* filterHeight,
|
||||
* filterWidth, ======> [height, width]
|
||||
* outputHeight,
|
||||
* outputWidth]
|
||||
*
|
||||
* If the template argument Format is kOCF, the shape of colData is:
|
||||
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
|
||||
* So, it is easy to reshape into a sequence matrix for rnn calculation.
|
||||
* The shape of sequence matrix is [seqLength, stepSize], where the seqLength
|
||||
* is equal outputHeight * outputWidth, and the stepSize is equal
|
||||
* inputChannels * filterHeight * filterWidth.
|
||||
*
|
||||
* Reshape:
|
||||
* shape of colData shape of sequence matrix
|
||||
* [outputHeight,
|
||||
* outputWidth,
|
||||
* inputChannels, ======> [seqLength, stepSize]
|
||||
* filterHeight,
|
||||
* filterWidth]
|
||||
*
|
||||
* \note The caller needs to ensure that imShape.inputChannels is equal to
|
||||
* colShape.inputChannels.
|
||||
*/
|
||||
template <ColFormat Format, DeviceType Device, class T>
|
||||
class Im2ColFunctor {
|
||||
public:
|
||||
void operator()(const T* imData, const TensorShape& imShape, T* colData,
|
||||
const TensorShape& colShape, int strideHeight,
|
||||
int strideWidth, int paddingHeight, int paddingWidth);
|
||||
};
|
||||
|
||||
template <ColFormat Format, DeviceType Device, class T>
|
||||
class Col2ImFunctor {
|
||||
public:
|
||||
void operator()(T* imData, const TensorShape& imShape, const T* colData,
|
||||
const TensorShape& colShape, int strideHeight,
|
||||
int strideWidth, int paddingHeight, int paddingWidth);
|
||||
};
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue